亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is more and more frequently the case in applications that the data we observe come from one or more random variables taking values in an infinite dimensional space, e.g. curves. The need to have tools adapted to the nature of these data explains the growing interest in the field of functional data analysis. The model we study in this paper assumes a linear dependence between a quantity of interest and several covariates, at least one of which has an infinite dimension. To select the relevant covariates in this context, we investigate adaptations of the Lasso method. Two estimation methods are defined. The first one consists in the minimization of a Group-Lasso criterion on the multivariate functional space H. The second one minimizes the same criterion but on a finite dimensional subspaces of H whose dimension is chosen by a penalized least squares method. We prove oracle inequalities of sparsity in the case where the design is fixed or random. To compute the solutions of both criteria in practice, we propose a coordinate descent algorithm. A numerical study on simulated and real data illustrates the behavior of the estimators.

相關內容

Data sets of multivariate normal distributions abound in many scientific areas like diffusion tensor imaging, structure tensor computer vision, radar signal processing, machine learning, just to name a few. In order to process those normal data sets for downstream tasks like filtering, classification or clustering, one needs to define proper notions of dissimilarities between normals and paths joining them. The Fisher-Rao distance defined as the Riemannian geodesic distance induced by the Fisher information metric is such a principled metric distance which however is not known in closed-form excepts for a few particular cases. In this work, we first report a fast and robust method to approximate arbitrarily finely the Fisher-Rao distance between multivariate normal distributions. Second, we introduce a class of distances based on diffeomorphic embeddings of the normal manifold into a submanifold of the higher-dimensional symmetric positive-definite cone corresponding to the manifold of centered normal distributions. We show that the projective Hilbert distance on the cone yields a metric on the embedded normal submanifold and we pullback that cone distance with its associated straight line Hilbert cone geodesics to obtain a distance and smooth paths between normal distributions. Compared to the Fisher-Rao distance approximation, the pullback Hilbert cone distance is computationally light since it requires to compute only the extreme minimal and maximal eigenvalues of matrices. Finally, we show how to use those distances in clustering tasks.

This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension d; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself, and propose a simple stopping rule applicable to any optimization method which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.

Looking for sparsity is nowadays crucial to speed up the training of large-scale neural networks. Projections onto the $\ell_{1,2}$ and $\ell_{1,\infty}$ are among the most efficient techniques to sparsify and reduce the overall cost of neural networks. In this paper, we introduce a new projection algorithm for the $\ell_{1,\infty}$ norm ball. The worst-case time complexity of this algorithm is $\mathcal{O}\big(nm+J\log(nm)\big)$ for a matrix in $\mathbb{R}^{n\times m}$. $J$ is a term that tends to 0 when the sparsity is high, and to $nm$ when the sparsity is low. Its implementation is easy and it is guaranteed to converge to the exact solution in a finite time. Moreover, we propose to incorporate the $\ell_{1,\infty}$ ball projection while training an autoencoder to enforce feature selection and sparsity of the weights. Sparsification appears in the encoder to primarily do feature selection due to our application in biology, where only a very small part ($<2\%$) of the data is relevant. We show that both in the biological case and in the general case of sparsity that our method is the fastest.

We develop a robust Bayesian functional principal component analysis (FPCA) by incorporating skew elliptical classes of distributions. The proposed method effectively captures the primary source of variation among curves, even when abnormal observations contaminate the data. We model the observations using skew elliptical distributions by introducing skewness with transformation and conditioning into the multivariate elliptical symmetric distribution. To recast the covariance function, we employ an approximate spectral decomposition. We discuss the selection of prior specifications and provide detailed information on posterior inference, including the forms of the full conditional distributions, choices of hyperparameters, and model selection strategies. Furthermore, we extend our model to accommodate sparse functional data with only a few observations per curve, thereby creating a more general Bayesian framework for FPCA. To assess the performance of our proposed model, we conduct simulation studies comparing it to well-known frequentist methods and conventional Bayesian methods. The results demonstrate that our method outperforms existing approaches in the presence of outliers and performs competitively in outlier-free datasets. Furthermore, we illustrate the effectiveness of our method by applying it to environmental and biological data to identify outlying functional data. The implementation of our proposed method and applications are available at //github.com/SFU-Stat-ML/RBFPCA.

Cluster-randomized experiments are increasingly used to evaluate interventions in routine practice conditions, and researchers often adopt model-based methods with covariate adjustment in the statistical analyses. However, the validity of model-based covariate adjustment is unclear when the working models are misspecified, leading to ambiguity of estimands and risk of bias. In this article, we first adapt two conventional model-based methods, generalized estimating equations and linear mixed models, with weighted g-computation to achieve robust inference for cluster-average and individual-average treatment effects. To further overcome the limitations of model-based covariate adjustment methods, we propose an efficient estimator for each estimand that allows for flexible covariate adjustment and additionally addresses cluster size variation dependent on treatment assignment and other cluster characteristics. Such cluster size variations often occur post-randomization and, if ignored, can lead to bias of model-based estimators. For our proposed efficient covariate-adjusted estimator, we prove that when the nuisance functions are consistently estimated by machine learning algorithms, the estimator is consistent, asymptotically normal, and efficient. When the nuisance functions are estimated via parametric working models, the estimator is triply-robust. Simulation studies and analyses of three real-world cluster-randomized experiments demonstrate that the proposed methods are superior to existing alternatives.

The central problem we address in this work is estimation of the parameter support set S, the set of indices corresponding to nonzero parameters, in the context of a sparse parametric likelihood model for count-valued multivariate time series. We develop a computationally-intensive algorithm that performs the estimation by aggregating support sets obtained by applying the LASSO to data subsamples. Our approach is to identify several well-fitting candidate models and estimate S by the most frequently-used parameters, thus \textit{aggregating} candidate models rather than selecting a single candidate deemed optimal in some sense. While our method is broadly applicable to any selection problem, we focus on the generalized vector autoregressive model class, and in particular the Poisson case, due to (i) the difficulty of the support estimation problem due to complex dependence in the data, (ii) recent work applying the LASSO in this context, and (iii) interesting applications in network recovery from discrete multivariate time series. We establish benchmark methods based on the LASSO and present empirical results demonstrating the superior performance of our method. Additionally, we present an application estimating ecological interaction networks from paleoclimatology data.

Variable independence and decomposability are algorithmic techniques for simplifying logical formulas by tearing apart connections between free variables. These techniques were originally proposed to speed up query evaluation in constraint databases, in particular by representing the query as a Boolean combination of formulas with no interconnected variables. They also have many other applications in SMT, string analysis, databases, automata theory and other areas. However, the precise complexity of variable independence and decomposability has been left open especially for the quantifier-free theory of linear real arithmetic (LRA), which is central in database applications. We introduce a novel characterization of formulas admitting decompositions and use it to show that it is coNP-complete to decide variable decomposability over LRA. As a corollary, we obtain that deciding variable independence is in $ \Sigma_2^p $. These results substantially improve the best known double-exponential time algorithms for variable decomposability and independence. In many practical applications, it is crucial to be able to efficiently eliminate connections between variables whenever possible. We design and implement an algorithm for this problem, which is optimal in theory, exponentially faster compared to the current state-of-the-art algorithm and efficient on various microbenchmarks. In particular, our algorithm is the first one to overcome a fundamental barrier between non-discrete and discrete first-order theories. Formulas arising in practice often have few or even no free variables that are perfectly independent. In this case, our algorithm can compute a best-possible approximation of a decomposition, which can be used to optimize database queries by exploiting partial variable independence, which is present in almost every logical formula or database query constraint.

The starting point for much of multivariate analysis (MVA) is an $n\times p$ data matrix whose $n$ rows represent observations and whose $p$ columns represent variables. Some multivariate data sets, however, may be best conceptualized not as $n$ discrete $p$-variate observations, but as $p$ curves or functions defined on a common time interval. We introduce a framework for extending techniques of multivariate analysis to such settings. The proposed framework rests on the assumption that the curves can be represented as linear combinations of basis functions such as B-splines. This is formally identical to the Ramsay-Silverman representation of functional data; but whereas functional data analysis extends MVA to the case of observations that are curves rather than vectors -- heuristically, $n\times p$ data with $p$ infinite -- we are instead concerned with what happens when $n$ is infinite. We describe how to translate the classical MVA methods of covariance and correlation estimation, principal component analysis, Fisher's linear discriminant analysis, and $k$-means clustering to the continuous-time setting. We illustrate the methods with a novel perspective on a well-known Canadian weather data set, and with applications to neurobiological and environmetric data. The methods are implemented in the publicly available R package \texttt{ctmva}.

We consider the problem of learning a sparse graph underlying an undirected Gaussian graphical model, a key problem in statistical machine learning. Given $n$ samples from a multivariate Gaussian distribution with $p$ variables, the goal is to estimate the $p \times p$ inverse covariance matrix (aka precision matrix), assuming it is sparse (i.e., has a few nonzero entries). We propose GraphL0BnB, a new estimator based on an $\ell_0$-penalized version of the pseudolikelihood function, while most earlier approaches are based on the $\ell_1$-relaxation. Our estimator can be formulated as a convex mixed integer program (MIP) which can be difficult to compute at scale using off-the-shelf commercial solvers. To solve the MIP, we propose a custom nonlinear branch-and-bound (BnB) framework that solves node relaxations with tailored first-order methods. As a by-product of our BnB framework, we propose large-scale solvers for obtaining good primal solutions that are of independent interest. We derive novel statistical guarantees (estimation and variable selection) for our estimator and discuss how our approach improves upon existing estimators. Our numerical experiments on real/synthetic datasets suggest that our method can solve, to near-optimality, problem instances with $p = 10^4$ -- corresponding to a symmetric matrix of size $p \times p$ with $p^2/2$ binary variables. We demonstrate the usefulness of GraphL0BnB versus various state-of-the-art approaches on a range of datasets.

Recently, many researchers have studied strategic games inspired by Schelling's influential model of residential segregation. In this model, agents belonging to $k$ different types are placed at the nodes of a network. Agents can be either stubborn, in which case they will always choose their preferred location, or strategic, in which case they aim to maximize the fraction of agents of their own type in their neighborhood. In the so-called Schelling games inspired by this model, strategic agents are assumed to be similarity-seeking: their utility is defined as the fraction of its neighbors of the same type as itself. In this paper, we introduce a new type of strategic jump game in which agents are instead diversity-seeking: the utility of an agent is defined as the fraction of its neighbors that is of a different type than itself. We show that it is NP-hard to determine the existence of an equilibrium in such games, if some agents are stubborn. However, in trees, our diversity-seeking jump game always admits a pure Nash equilibrium, if all agents are strategic. In regular graphs and spider graphs with a single empty node, as well as in all paths, we prove a stronger result: the game is a potential game, that is, improving response dynamics will always converge to a Nash equilibrium from any initial placement of agents.

北京阿比特科技有限公司