亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a functional proportional hazards mixture cure (FPHMC) model with scalar and functional covariates measured at the baseline. The mixture cure model, useful in studying populations with a cure fraction of a particular event of interest is extended to functional data. We employ the EM algorithm and develop a semiparametric penalized spline-based approach to estimate the dynamic functional coefficients of the incidence and the latency part. The proposed method is computationally efficient and simultaneously incorporates smoothness in the estimated functional coefficients via roughness penalty. Simulation studies illustrate a satisfactory performance of the proposed method in accurately estimating the model parameters and the baseline survival function. Finally, the clinical potential of the model is demonstrated in two real data examples that incorporate rich high-dimensional biomedical signals as functional covariates measured at the baseline and constitute novel domains to apply cure survival models in contemporary medical situations. In particular, we analyze i) minute-by-minute physical activity data from the National Health and Nutrition Examination Survey (NHANES) 2003-2006 to study the association between diurnal patterns of physical activity (PA) at baseline and all cancer mortality through 2019 while adjusting for other biological factors; ii) the impact of daily functional measures of disease severity collected in the intensive care unit on post ICU recovery and mortality event. Our findings provide novel epidemiological insights into the association between daily patterns of PA and cancer mortality. Software implementation and illustration of the proposed estimation method is provided in R.

相關內容

Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.

We study the prophet secretary problem, a well-studied variant of the classic prophet inequality, where values are drawn from independent known distributions but arrive in uniformly random order. Upon seeing a value at each step, the decision-maker has to either select it and stop or irrevocably discard it. Traditionally, the chosen benchmark is the expected reward of the prophet, who knows all the values in advance and can always select the maximum one. %% In this work, we study the prophet secretary problem against a less pessimistic but equally well-motivated benchmark; the \emph{online} optimal. Here, the main goal is to find polynomial-time algorithms that guarantee near-optimal expected reward. As a warm-up, we present a quasi-polynomial time approximation scheme (QPTAS) achieving a $(1-\e)$-approximation in $O(n^{\text{poly} \log n\cdot f(\e)})$ time through careful discretization and non-trivial bundling processes. Using the toolbox developed for the QPTAS, coupled with a novel \emph{frontloading} technique that enables us to reduce the number of decisions we need to make, we are able to remove the dependence on $n$ in the exponent and obtain a polynomial time approximation scheme (PTAS) for this problem.

Recently, an increasing interest in the management of water and health resources has been recorded. This interest is fed by the global sustainability challenges posed to the humanity that have water scarcity and quality at their core. Thus, the availability of effective, meaningful and open data is crucial to address those issues in the broader context of the Sustainable Development Goals of clean water and sanitation as targeted by the United Nations. In this paper, we present the Water Health Open Knowledge Graph (WHOW-KG) along with its design methodology and analysis on impact. WHOW-KG is a semantic knowledge graph that models data on water consumption, pollution, infectious disease rates and drug distribution. The WHOW-KG is developed in the context of the EU-funded WHOW (Water Health Open Knowledge) project and aims at supporting a wide range of applications: from knowledge discovery to decision-making, making it a valuable resource for researchers, policymakers, and practitioners in the water and health domains. The WHOW-KG consists of a network of five ontologies and related linked open data, modelled according to those ontologies.

Generative modeling has recently undergone remarkable advancements, primarily propelled by the transformative implications of Diffusion Probabilistic Models (DPMs). The impressive capability of these models, however, often entails significant computational overhead during both training and inference. To tackle this challenge, we present Diff-Pruning, an efficient compression method tailored for learning lightweight diffusion models from pre-existing ones, without the need for extensive re-training. The essence of Diff-Pruning is encapsulated in a Taylor expansion over pruned timesteps, a process that disregards non-contributory diffusion steps and ensembles informative gradients to identify important weights. Our empirical assessment, undertaken across four diverse datasets highlights two primary benefits of our proposed method: 1) Efficiency: it enables approximately a 50% reduction in FLOPs at a mere 10% to 20% of the original training expenditure; 2) Consistency: the pruned diffusion models inherently preserve generative behavior congruent with their pre-trained progenitors. Code is available at \url{//github.com/VainF/Diff-Pruning}.

Posing high-contact interactions is challenging and time-consuming, with hand-object interactions being especially difficult due to the large number of degrees of freedom (DOF) of the hand and the fact that humans are experts at judging hand poses. This paper addresses this challenge by elevating contact areas to first-class primitives. We provide \textit{end-to-end art-directable} (EAD) tools to model interactions based on contact areas, directly manipulate contact areas, and compute corresponding poses automatically. To make these operations intuitive and fast, we present a novel axis-based contact model that supports real-time approximately isometry-preserving operations on triangulated surfaces, permits movement between surfaces, and is both robust and scalable to large areas. We show that use of our contact model facilitates high quality posing even for unconstrained, high-DOF custom rigs intended for traditional keyframe-based animation pipelines. We additionally evaluate our approach with comparisons to prior art, ablation studies, user studies, qualitative assessments, and extensions to full-body interaction.

Abstaining classifiers have the option to abstain from making predictions on inputs that they are unsure about. These classifiers are becoming increasingly popular in high-stake decision-making problems, as they can withhold uncertain predictions to improve their reliability and safety. When evaluating black-box abstaining classifier(s), however, we lack a principled approach that accounts for what the classifier would have predicted on its abstentions. These missing predictions are crucial when, e.g., a radiologist is unsure of their diagnosis or when a driver is inattentive in a self-driving car. In this paper, we introduce a novel approach and perspective to the problem of evaluating and comparing abstaining classifiers by treating abstentions as missing data. Our evaluation approach is centered around defining the counterfactual score of an abstaining classifier, defined as the expected performance of the classifier had it not been allowed to abstain. We specify the conditions under which the counterfactual score is identifiable: if the abstentions are stochastic, and if the evaluation data is independent of the training data (ensuring that the predictions are missing at random), then the score is identifiable. Note that, if abstentions are deterministic, then the score is unidentifiable because the classifier can perform arbitrarily poorly on its abstentions. Leveraging tools from observational causal inference, we then develop nonparametric and doubly robust methods to efficiently estimate this quantity under identification. Our approach is examined in both simulated and real data experiments.

Understanding how and why certain communities bear a disproportionate burden of disease is challenging due to the scarcity of data on these communities. Surveys provide a useful avenue for accessing hard-to-reach populations, as many surveys specifically oversample understudied and vulnerable populations. When survey data is used for analysis, it is important to account for the complex survey design that gave rise to the data, in order to avoid biased conclusions. The field of Bayesian survey statistics aims to account for such survey design while leveraging the advantages of Bayesian models, which can flexibly handle sparsity through borrowing of information and provide a coherent inferential framework to easily obtain variances for complex models and data types. For these reasons, Bayesian survey methods seem uniquely well-poised for health disparities research, where heterogeneity and sparsity are frequent considerations. This review discusses three main approaches found in the Bayesian survey methodology literature: 1) multilevel regression and post-stratification, 2) weighted pseudolikelihood-based methods, and 3) synthetic population generation. We discuss advantages and disadvantages of each approach, examine recent applications and extensions, and consider how these approaches may be leveraged to improve research in population health equity.

Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

北京阿比特科技有限公司