In this chapter, we propose a non-traditional RCR training in data science that is grounded into a virtue theory framework. First, we delineate the approach in more theoretical detail, by discussing how the goal of RCR training is to foster the cultivation of certain moral abilities. We specify the nature of these abilities: while the ideal is the cultivation of virtues, the limited space allowed by RCR modules can only facilitate the cultivation of superficial abilities or proto-virtues, which help students to familiarize with moral and political issues in the data science environment. Third, we operationalize our approach by stressing that (proto-)virtue acquisition (like skill acquisition) occurs through the technical and social tasks of daily data science activities, where these repetitive tasks provide the opportunities to develop (proto-)virtue capacity and to support the development of ethically robust data systems. Finally, we discuss a concrete example of how this approach has been implemented. In particular, we describe how this method is applied to teach data ethics to students participating in the CODATA-RDA Data Science Summer Schools.
The purpose of this paper is to look into how central notions in statistical learning theory, such as realisability, generalise under the assumption that train and test distribution are issued from the same credal set, i.e., a convex set of probability distributions. This can be considered as a first step towards a more general treatment of statistical learning under epistemic uncertainty.
The use of deep learning models in computational biology has increased massively in recent years, and is expected to do so further with the current advances in fields like Natural Language Processing. These models, although able to draw complex relations between input and target, are also largely inclined to learn noisy deviations from the pool of data used during their development. In order to assess their performance on unseen data (their capacity to generalize), it is common to randomly split the available data in development (train/validation) and test sets. This procedure, although standard, has lately been shown to produce dubious assessments of generalization due to the existing similarity between samples in the databases used. In this work, we present SpanSeq, a database partition method for machine learning that can scale to most biological sequences (genes, proteins and genomes) in order to avoid data leakage between sets. We also explore the effect of not restraining similarity between sets by reproducing the development of the state-of-the-art model DeepLoc, not only confirming the consequences of randomly splitting databases on the model assessment, but expanding those repercussions to the model development. SpanSeq is available for downloading and installing at //github.com/genomicepidemiology/SpanSeq.
We develop a theory of high-arity PAC learning, which is statistical learning in the presence of "structured correlation". In this theory, hypotheses are either graphs, hypergraphs or, more generally, structures in finite relational languages, and i.i.d. sampling is replaced by sampling an induced substructure, producing an exchangeable distribution. We prove a high-arity version of the fundamental theorem of statistical learning by characterizing high-arity (agnostic) PAC learnability in terms of finiteness of a purely combinatorial dimension and in terms of an appropriate version of uniform convergence.
In this paper we propose a reinforcement learning based weakly supervised system for localisation. We train a controller function to localise regions of interest within an image by introducing a novel reward definition that utilises non-binarised classification probability, generated by a pre-trained binary classifier which classifies object presence in images or image crops. The object-presence classifier may then inform the controller of its localisation quality by quantifying the likelihood of the image containing an object. Such an approach allows us to minimize any potential labelling or human bias propagated via human labelling for fully supervised localisation. We evaluate our proposed approach for a task of cancerous lesion localisation on a large dataset of real clinical bi-parametric MR images of the prostate. Comparisons to the commonly used multiple-instance learning weakly supervised localisation and to a fully supervised baseline show that our proposed method outperforms the multi-instance learning and performs comparably to fully-supervised learning, using only image-level classification labels for training.
We present a unification and generalization of sequentially and hierarchically semi-separable (SSS and HSS) matrices called tree semi-separable (TSS) matrices. Our main result is to show that any dense matrix can be expressed in a TSS format. Here, the dimensions of the generators are specified by the ranks of the Hankel blocks of the matrix. TSS matrices satisfy a graph-induced rank structure (GIRS) property. It is shown that TSS matrices generalize the algebraic properties of SSS and HSS matrices under addition, products, and inversion. Subsequently, TSS matrices admit linear time matrix-vector multiply, matrix-matrix multiply, matrix-matrix addition, inversion, and solvers.
With the exponential growth of the life science literature, biomedical text mining (BTM) has become an essential technology for accelerating the extraction of insights from publications. Identifying named entities (e.g., diseases, drugs, or genes) in texts and their linkage to reference knowledge bases are crucial steps in BTM pipelines to enable information aggregation from different documents. However, tools for these two steps are rarely applied in the same context in which they were developed. Instead, they are applied in the wild, i.e., on application-dependent text collections different from those used for the tools' training, varying, e.g., in focus, genre, style, and text type. This raises the question of whether the reported performance of BTM tools can be trusted for downstream applications. Here, we report on the results of a carefully designed cross-corpus benchmark for named entity extraction, where tools were applied systematically to corpora not used during their training. Based on a survey of 28 published systems, we selected five for an in-depth analysis on three publicly available corpora encompassing four different entity types. Comparison between tools results in a mixed picture and shows that, in a cross-corpus setting, the performance is significantly lower than the one reported in an in-corpus setting. HunFlair2 showed the best performance on average, being closely followed by PubTator. Our results indicate that users of BTM tools should expect diminishing performances when applying them in the wild compared to original publications and show that further research is necessary to make BTM tools more robust.
This paper proposes a novel approach to improve the training efficiency and the generalization performance of Feed Forward Neural Networks (FFNNs) resorting to an optimal rescaling of input features (OFR) carried out by a Genetic Algorithm (GA). The OFR reshapes the input space improving the conditioning of the gradient-based algorithm used for the training. Moreover, the scale factors exploration entailed by GA trials and selection corresponds to different initialization of the first layer weights at each training attempt, thus realizing a multi-start global search algorithm (even though restrained to few weights only) which fosters the achievement of a global minimum. The approach has been tested on a FFNN modeling the outcome of a real industrial process (centerless grinding).
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.