Privacy protection methods, such as differentially private mechanisms, introduce noise into resulting statistics which often produces complex and intractable sampling distributions. In this paper, we propose a simulation-based "repro sample" approach to produce statistically valid confidence intervals and hypothesis tests, which builds on the work of Xie and Wang (2022). We show that this methodology is applicable to a wide variety of private inference problems, appropriately accounts for biases introduced by privacy mechanisms (such as by clamping), and improves over other state-of-the-art inference methods such as the parametric bootstrap in terms of the coverage and type I error of the private inference. We also develop significant improvements and extensions for the repro sample methodology for general models (not necessarily related to privacy), including 1) modifying the procedure to ensure guaranteed coverage and type I errors, even accounting for Monte Carlo error, and 2) proposing efficient numerical algorithms to implement the confidence intervals and $p$-values.
We establish that a large, flexible class of long, high redundancy error correcting codes can be efficiently and accurately decoded with guessing random additive noise decoding (GRAND). Performance evaluation demonstrates that it is possible to construct simple product codes with lengths of approximately 200 to 4000 bits and rates between 0.2 and 0.8 that outperform low-density parity-check (LDPC) codes from the 5G New Radio standard in both AWGN and fading channels. The concatenated structure enables many desirable features, including: low-complexity hardware-friendly encoding and decoding; significant flexibility in length and rate through modularity; and high levels of parallelism in encoding and decoding that enable low latency. Central is the development of a method through which any soft-input (SI) GRAND algorithm can provide soft-output (SO) in the form of an accurate a-posteriori estimate of the likelihood that a decoding is correct or, in the case of list decoding, the likelihood that each element of the list is correct. The distinguishing feature of soft-output GRAND (SOGRAND) is the provision of an estimate that the correct decoding has not been found, even when providing a single decoding. That per-block SO can be converted into accurate per-bit SO by a weighted sum that includes a term for the SI. Implementing SOGRAND adds negligible computation and memory to the existing decoding process, and using it results in a practical, low-latency alternative to LDPC codes.
We tackle the problem of bundle adjustment (i.e., simultaneous refinement of camera poses and scene map) for a purely rotating event camera. Starting from first principles, we formulate the problem as a classical non-linear least squares optimization. The photometric error is defined using the event generation model directly in the camera rotations and the semi-dense scene brightness that triggers the events. We leverage the sparsity of event data to design a tractable Levenberg-Marquardt solver that handles the very large number of variables involved. To the best of our knowledge, our method, which we call Event-based Photometric Bundle Adjustment (EPBA), is the first event-only photometric bundle adjustment method that works on the brightness map directly and exploits the space-time characteristics of event data, without having to convert events into image-like representations. Comprehensive experiments on both synthetic and real-world datasets demonstrate EPBA's effectiveness in decreasing the photometric error (by up to 90%), yielding results of unparalleled quality. The refined maps reveal details that were hidden using prior state-of-the-art rotation-only estimation methods. The experiments on modern high-resolution event cameras show the applicability of EPBA to panoramic imaging in various scenarios (without map initialization, at multiple resolutions, and in combination with other methods, such as IMU dead reckoning or previous event-based rotation estimation methods). We make the source code publicly available. //github.com/tub-rip/epba
Current postprocessing techniques often require separate models for each lead time and disregard possible inter-ensemble relationships by either correcting each member separately or by employing distributional approaches. In this work, we tackle these shortcomings with an innovative, fast and accurate Transformer which postprocesses each ensemble member individually while allowing information exchange across variables, spatial dimensions and lead times by means of multi-headed self-attention. Weather foreacasts are postprocessed over 20 lead times simultaneously while including up to twelve meteorological predictors. We use the EUPPBench dataset for training which contains ensemble predictions from the European Center for Medium-range Weather Forecasts' integrated forecasting system alongside corresponding observations. The work presented here is the first to postprocess the ten and one hundred-meter wind speed forecasts within this benchmark dataset, while also correcting the two-meter temperature. Our approach significantly improves the original forecasts, as measured by the CRPS, with 17.5 % for two-meter temperature, nearly 5% for ten-meter wind speed and 5.3 % for one hundred-meter wind speed, outperforming a classical member-by-member approach employed as competitive benchmark. Furthermore, being up to 75 times faster, it fulfills the demand for rapid operational weather forecasts in various downstream applications, including renewable energy forecasting.
Quantitative requirements play an important role in the context of multi-agent systems, where there is often a trade-off between the tasks of individual agents and the constraints that the agents must jointly adhere to. We study multi-agent systems whose requirements are formally specified in the quantitative temporal logic LTL[$\mathcal{F}$] as a combination of local task specifications for the individual agents and a shared safety constraint, The intricate dependencies between the individual agents entailed by their local and shared objectives make the design of multi-agent systems error-prone, and their verification time-consuming. In this paper we address this problem by proposing a novel notion of quantitative assume-guarantee contracts, that enables the compositional design and verification of multi-agent systems with quantitative temporal specifications. The crux of these contracts lies in their ability to capture the coordination between the individual agents to achieve an optimal value of the overall specification under any possible behavior of the external environment. We show that the proposed framework improves the scalability and modularity of formal verification of multi-agent systems against quantitative temporal specifications.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.