Realistic simulation is key to enabling safe and scalable development of % self-driving vehicles. A core component is simulating the sensors so that the entire autonomy system can be tested in simulation. Sensor simulation involves modeling traffic participants, such as vehicles, with high quality appearance and articulated geometry, and rendering them in real time. The self-driving industry has typically employed artists to build these assets. However, this is expensive, slow, and may not reflect reality. Instead, reconstructing assets automatically from sensor data collected in the wild would provide a better path to generating a diverse and large set with good real-world coverage. Nevertheless, current reconstruction approaches struggle on in-the-wild sensor data, due to its sparsity and noise. To tackle these issues, we present CADSim, which combines part-aware object-class priors via a small set of CAD models with differentiable rendering to automatically reconstruct vehicle geometry, including articulated wheels, with high-quality appearance. Our experiments show our method recovers more accurate shapes from sparse data compared to existing approaches. Importantly, it also trains and renders efficiently. We demonstrate our reconstructed vehicles in several applications, including accurate testing of autonomy perception systems.
Loss functions steer the optimization direction of recommendation models and are critical to model performance, but have received relatively little attention in recent recommendation research. Among various losses, we find Softmax loss (SL) stands out for not only achieving remarkable accuracy but also better robustness and fairness. Nevertheless, the current literature lacks a comprehensive explanation for the efficacy of SL. Toward addressing this research gap, we conduct theoretical analyses on SL and uncover three insights: 1) Optimizing SL is equivalent to performing Distributionally Robust Optimization (DRO) on the negative data, thereby learning against perturbations on the negative distribution and yielding robustness to noisy negatives. 2) Comparing with other loss functions, SL implicitly penalizes the prediction variance, resulting in a smaller gap between predicted values and and thus producing fairer results. Building on these insights, we further propose a novel loss function Bilateral SoftMax Loss (BSL) that extends the advantage of SL to both positive and negative sides. BSL augments SL by applying the same Log-Expectation-Exp structure to positive examples as is used for negatives, making the model robust to the noisy positives as well. Remarkably, BSL is simple and easy-to-implement -- requiring just one additional line of code compared to SL. Experiments on four real-world datasets and three representative backbones demonstrate the effectiveness of our proposal. The code is available at //github.com/junkangwu/BSL
Electromagnetic transient (EMT) simulation is a crucial tool for power system dynamic analysis because of its detailed component modeling and high simulation accuracy. However, it suffers from computational burdens for large power grids since a tiny time step is typically required for accuracy. This paper proposes an efficient and accurate semi-analytical approach for state-space EMT simulations of power grids. It employs high-order semi-analytical solutions derived using the differential transformation from the state-space EMT grid model. The approach incorporates a proposed variable time step strategy based on equation imbalance, leveraging structural information of the grid model, to enlarge the time step and accelerate simulations, while high resolution is maintained by reconstructing detailed fast EMT dynamics through an efficient dense output mechanism. It also addresses limit-induced switches during large time steps by using a binary search-enhanced quadratic interpolation algorithm. Case studies are conducted on EMT models of the IEEE 39-bus system and a synthetic 390-bus system to demonstrate the merits of the new simulation approach against traditional methods.
Graph computing has become increasingly crucial in processing large-scale graph data, with numerous systems developed for this purpose. Two years ago, we introduced GraphScope as a system addressing a wide array of graph computing needs, including graph traversal, analytics, and learning in one system. Since its inception, GraphScope has achieved significant technological advancements and gained widespread adoption across various industries. However, one key lesson from this journey has been understanding the limitations of a "one-size-fits-all" approach, especially when dealing with the diversity of programming interfaces, applications, and data storage formats in graph computing. In response to these challenges, we present GraphScope Flex, the next iteration of GraphScope. GraphScope Flex is designed to be both resource-efficient and cost-effective, while also providing flexibility and user-friendliness through its LEGO-like modularity. This paper explores the architectural innovations and fundamental design principles of GraphScope Flex, all of which are direct outcomes of the lessons learned during our ongoing development process. We validate the adaptability and efficiency of GraphScope Flex with extensive evaluations on synthetic and real-world datasets. The results show that GraphScope Flex achieves 2.4X throughput and up to 55.7X speedup over other systems on the LDBC Social Network and Graphalytics benchmarks, respectively. Furthermore, GraphScope Flex accomplishes up to a 2,400X performance gain in real-world applications, demonstrating its proficiency across a wide range of graph computing scenarios with increased effectiveness.
Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.
Agent-based simulators provide granular representations of complex intelligent systems by directly modelling the interactions of the system's constituent agents. Their high-fidelity nature enables hyper-local policy evaluation and testing of what-if scenarios, but is associated with large computational costs that inhibits their widespread use. Surrogate models can address these computational limitations, but they must behave consistently with the agent-based model under policy interventions of interest. In this paper, we capitalise on recent developments on causal abstractions to develop a framework for learning interventionally consistent surrogate models for agent-based simulators. Our proposed approach facilitates rapid experimentation with policy interventions in complex systems, while inducing surrogates to behave consistently with high probability with respect to the agent-based simulator across interventions of interest. We demonstrate with empirical studies that observationally trained surrogates can misjudge the effect of interventions and misguide policymakers towards suboptimal policies, while surrogates trained for interventional consistency with our proposed method closely mimic the behaviour of an agent-based model under interventions of interest.
We consider the problem of inferring latent stochastic differential equations (SDEs) with a time and memory cost that scales independently with the amount of data, the total length of the time series, and the stiffness of the approximate differential equations. This is in stark contrast to typical methods for inferring latent differential equations which, despite their constant memory cost, have a time complexity that is heavily dependent on the stiffness of the approximate differential equation. We achieve this computational advancement by removing the need to solve differential equations when approximating gradients using a novel amortization strategy coupled with a recently derived reparametrization of expectations under linear SDEs. We show that, in practice, this allows us to achieve similar performance to methods based on adjoint sensitivities with more than an order of magnitude fewer evaluations of the model in training.
External and internal convertible (EIC) form-based motion control is one of the effective designs of simultaneously trajectory tracking and balance for underactuated balance robots. Under certain conditions, the EIC-based control design however leads to uncontrolled robot motion. We present a Gaussian process (GP)-based data-driven learning control for underactuated balance robots with the EIC modeling structure. Two GP-based learning controllers are presented by using the EIC structure property. The partial EIC (PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem and one reduced-order underactuated system. The null-space EIC (NEIC)-based control compensates for the uncontrolled motion in a subspace, while the other closed-loop dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks are guaranteed and convergence rate and bounded errors are achieved without causing any uncontrolled motion by the original EIC-based control. We validate the results and demonstrate the GP-based learning control design performance using two inverted pendulum platforms.
CNC manufacturing is a process that employs computer numerical control (CNC) machines to govern the movements of various industrial tools and machinery, encompassing equipment ranging from grinders and lathes to mills and CNC routers. However, the reliance on manual CNC programming has become a bottleneck, and the requirement for expert knowledge can result in significant costs. Therefore, we introduce a pioneering approach named CNC-Net, representing the use of deep neural networks (DNNs) to simulate CNC machines and grasp intricate operations when supplied with raw materials. CNC-Net constitutes a self-supervised framework that exclusively takes an input 3D model and subsequently generates the essential operation parameters required by the CNC machine to construct the object. Our method has the potential to transformative automation in manufacturing by offering a cost-effective alternative to the high costs of manual CNC programming while maintaining exceptional precision in 3D object production. Our experiments underscore the effectiveness of our CNC-Net in constructing the desired 3D objects through the utilization of CNC operations. Notably, it excels in preserving finer local details, exhibiting a marked enhancement in precision compared to the state-of-the-art 3D CAD reconstruction approaches.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.