We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree using data from interventional experiments with known intervention targets. Our methods first learn the skeleton of the polytree and then orient its edges. The output is a CPDAG representing the interventional equivalence class of the polytree of the true underlying distribution. The skeleton and orientation recovery procedures we use rely on second order statistics and low-dimensional marginal distributions. We assess the performance of our methods under different scenarios in synthetic data sets and apply our algorithm to learn a polytree in a gene expression interventional data set. Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.
Vector Error Correction Model (VECM) is a classic method to analyse cointegration relationships amongst multivariate non-stationary time series. In this paper, we focus on high dimensional setting and seek for sample-size-efficient methodology to determine the level of cointegration. Our investigation centres at a Bayesian approach to analyse the cointegration matrix, henceforth determining the cointegration rank. We design two algorithms and implement them on simulated examples, yielding promising results particularly when dealing with high number of variables and relatively low number of observations. Furthermore, we extend this methodology to empirically investigate the constituents of the S&P 500 index, where low-volatility portfolios can be found during both in-sample training and out-of-sample testing periods.
Existing approaches to Implicit Neural Representation (INR) can be interpreted as a global scene representation via a linear combination of Fourier bases of different frequencies. However, such universal basis functions can limit the representation capability in local regions where a specific component is unnecessary, resulting in unpleasant artifacts. To this end, we introduce a learnable spatial mask that effectively dispatches distinct Fourier bases into respective regions. This translates into collaging Fourier patches, thus enabling an accurate representation of complex signals. Comprehensive experiments demonstrate the superior reconstruction quality of the proposed approach over existing baselines across various INR tasks, including image fitting, video representation, and 3D shape representation. Our method outperforms all other baselines, improving the image fitting PSNR by over 3dB and 3D reconstruction to 98.81 IoU and 0.0011 Chamfer Distance.
Neighborhood selection is a widely used method used for estimating the support set of sparse precision matrices, which helps determine the conditional dependence structure in undirected graphical models. However, reporting only point estimates for the estimated graph can result in poor replicability without accompanying uncertainty estimates. In fields such as psychology, where the lack of replicability is a major concern, there is a growing need for methods that can address this issue. In this paper, we focus on the Gaussian graphical model. We introduce a selective inference method to attach uncertainty estimates to the selected (nonzero) entries of the precision matrix and decide which of the estimated edges must be included in the graph. Our method provides an exact adjustment for the selection of edges, which when multiplied with the Wishart density of the random matrix, results in valid selective inferences. Through the use of externally added randomization variables, our adjustment is easy to compute, requiring us to calculate the probability of a selection event, that is equivalent to a few sign constraints and that decouples across the nodewise regressions. Through simulations and an application to a mobile health trial designed to study mental health, we demonstrate that our selective inference method results in higher power and improved estimation accuracy.
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification, which is crucial for ensuring the reliability of predictions. However, common CP methods heavily rely on data exchangeability, a condition often violated in practice. Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples. This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions. We illustrate the general theory with applications to the challenging setting of federated learning under data heterogeneity between agents. Our method allows constructing provably valid personalized prediction sets for agents in a fully federated way. The effectiveness of the proposed method is demonstrated in a series of experiments on real-world datasets.
In recent years, considerable attention has been devoted to the regularization models due to the presence of high-dimensional data in scientific research. Sparse support vector machine (SVM) are useful tools in high-dimensional data analysis, and they have been widely used in the area of econometrics. Nevertheless, the non-smoothness of objective functions and constraints present computational challenges for many existing solvers in the presence of ultra-high dimensional covariates. In this paper, we design efficient and parallelizable algorithms for solving sparse SVM problems with high dimensional data through feature space split. The proposed algorithm is based on the alternating direction method of multiplier (ADMM). We establish the rate of convergence of the proposed ADMM method and compare it with existing solvers in various high and ultra-high dimensional settings. The compatibility of the proposed algorithm with parallel computing can further alleviate the storage and scalability limitations of a single machine in large-scale data processing.
Transformers with linear attention allow for efficient parallel training but can simultaneously be formulated as an RNN with 2D (matrix-valued) hidden states, thus enjoying linear (with respect to output length) inference complexity. Recent works such as RetNet (Sun et al., 2023) and TransNormerLLM (Qin et al., 2023a) observe that adding a global decay term to the additive RNN update rule greatly improves performance, sometimes outperforming standard Transformers with softmax attention when trained at scale. In this work we show that adding a data-dependent gating mechanism further improves performance. We derive a parallel form of this gated linear attention layer that enables efficient training. However, a straightforward, numerically stable implementation of this parallel form requires generalized matrix multiplications in log-space for numerical stability, and thus cannot take advantage of tensor cores on modern GPUs which are optimized for standard matrix multiplications. We develop a hardware-efficient version of the parallel form that can still make use of tensor cores through block-parallel computations over sequence chunks. Experiments on moderate-scale language modeling (340M-parameter models trained on 15B tokens, 1.3B-parameter models trained on 100B tokens) show that gated linear attention (GLA) Transformers perform competitively against a strong LLaMA-architecture Transformer baseline (Touvron et al., 2023) as well as Mamba (Gu & Dao, 2023), a recently introduced state-space model with a data-dependent state transition mechanism. For training speed, our Triton-based implementation performs comparably to CUDA-optimized FlashAttention-2 (Dao, 2023) under the regular 2048 training length setting, while outperforming FlashAttention-2 when training on longer sequences beyond 4096.
This tutorial aims to establish connections between polynomial modular multiplication over a ring to circular convolution and discrete Fourier transform (DFT). The main goal is to extend the well-known theory of DFT in signal processing (SP) to other applications involving polynomials in a ring such as homomorphic encryption (HE). HE allows any third party to operate on the encrypted data without decrypting it in advance. Since most HE schemes are constructed from the ring-learning with errors (R-LWE) problem, efficient polynomial modular multiplication implementation becomes critical. Any improvement in the execution of these building blocks would have significant consequences for the global performance of HE. This lecture note describes three approaches to implementing long polynomial modular multiplication using the number theoretic transform (NTT): zero-padded convolution, without zero-padding, also referred to as negative wrapped convolution (NWC), and low-complexity NWC (LC-NWC).
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.