Depth estimation aims to predict dense depth maps. In autonomous driving scenes, sparsity of annotations makes the task challenging. Supervised models produce concave objects due to insufficient structural information. They overfit to valid pixels and fail to restore spatial structures. Self-supervised methods are proposed for the problem. Their robustness is limited by pose estimation, leading to erroneous results in natural scenes. In this paper, we propose a supervised framework termed Diffusion-Augmented Depth Prediction (DADP). We leverage the structural characteristics of diffusion model to enforce depth structures of depth models in a plug-and-play manner. An object-guided integrality loss is also proposed to further enhance regional structure integrality by fetching objective information. We evaluate DADP on three driving benchmarks and achieve significant improvements in depth structures and robustness. Our work provides a new perspective on depth estimation with sparse annotations in autonomous driving scenes.
Despite having the same basic prophet inequality setup and model of loss aversion, conclusions in our multi-dimensional model differs considerably from the one-dimensional model of Kleinberg et al. For example, Kleinberg et al. gives a tight closed-form on the competitive ratio that an online decision-maker can achieve as a function of $\lambda$, for any $\lambda \geq 0$. In our multi-dimensional model, there is a sharp phase transition: if $k$ denotes the number of dimensions, then when $\lambda \cdot (k-1) \geq 1$, no non-trivial competitive ratio is possible. On the other hand, when $\lambda \cdot (k-1) < 1$, we give a tight bound on the achievable competitive ratio (similar to Kleinberg et al.). As another example, Kleinberg et al. uncovers an exponential improvement in their competitive ratio for the random-order vs. worst-case prophet inequality problem. In our model with $k\geq 2$ dimensions, the gap is at most a constant-factor. We uncover several additional key differences in the multi- and single-dimensional models.
Using only image-sentence pairs, weakly-supervised visual-textual grounding aims to learn region-phrase correspondences of the respective entity mentions. Compared to the supervised approach, learning is more difficult since bounding boxes and textual phrases correspondences are unavailable. In light of this, we propose the Semantic Prior Refinement Model (SPRM), whose predictions are obtained by combining the output of two main modules. The first untrained module aims to return a rough alignment between textual phrases and bounding boxes. The second trained module is composed of two sub-components that refine the rough alignment to improve the accuracy of the final phrase-bounding box alignments. The model is trained to maximize the multimodal similarity between an image and a sentence, while minimizing the multimodal similarity of the same sentence and a new unrelated image, carefully selected to help the most during training. Our approach shows state-of-the-art results on two popular datasets, Flickr30k Entities and ReferIt, shining especially on ReferIt with a 9.6% absolute improvement. Moreover, thanks to the untrained component, it reaches competitive performances just using a small fraction of training examples.
In-Context Learning (ICL) over Large language models (LLMs) aims at solving previously unseen tasks by conditioning on a few training examples, eliminating the need for parameter updates and achieving competitive performance. In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets, i.e., the inherent knowledge learned in LLMs, the factual knowledge derived from the selected in-context examples, and the knowledge biases in LLMs for output generation. To unleash the power of LLMs in few-shot learning scenarios, we introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL: 1) injecting factual knowledge to LLMs during continual self-supervised pre-training, 2) judiciously selecting the examples with high knowledge relevance, and 3) calibrating the prediction results based on prior knowledge. We evaluate the proposed approaches on auto-regressive LLMs (e.g., GPT-style models) over multiple text classification and question answering tasks. Experimental results demonstrate that KICT substantially outperforms strong baselines, and improves by more than 13% and 7% of accuracy on text classification and question answering tasks, respectively.
Majority of off-policy reinforcement learning algorithms use overestimation bias control techniques. Most of these techniques rooted in heuristics, primarily addressing the consequences of overestimation rather than its fundamental origins. In this work we present a novel approach to the bias correction, similar in spirit to Double Q-Learning. We propose using a policy in form of a mixture with two components. Each policy component is maximized and assessed by separate networks, which removes any basis for the overestimation bias. Our approach shows promising near-SOTA results on a small set of MuJoCo environments.
The performance of Hamiltonian Monte Carlo crucially depends on its parameters, in particular the integration timestep and the number of integration steps. We present an adaptive general-purpose framework to automatically tune these parameters based on a loss function which promotes the fast exploration of phase-space. For this, we make use of a fully-differentiable set-up and use backpropagation for optimization. An attention-like loss is defined which allows for the gradient driven learning of the distribution of integration steps. We also highlight the importance of jittering for a smooth loss-surface. Our approach is demonstrated for the one-dimensional harmonic oscillator and alanine dipeptide, a small protein common as a test-case for simulation methods. We find a good correspondence between our loss and the autocorrelation times, resulting in well-tuned parameters for Hamiltonian Monte Carlo.
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.