亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Signalling pathways are conserved across different species, therefore making yeast a model organism to study these via disruption of kinase activity. Yeast has 159 genes that encode protein kinases and phosphatases, and 136 of these have counterparts in humans. Therefore any insight in this model organism could potentially offer indications of mechanisms of action in the human kinome. The study utilises a Prolog-based approach, data from a yeast kinase deletions strains study and publicly available kinase-protein associations. Prolog, a programming language that is well-suited for symbolic reasoning is used to reason over the data and infer compensatory kinase networks. This approach is based on the idea that when a kinase is knocked out, other kinases may compensate for this loss of activity. Background knowledge on kinases targeting proteins is used to guide the analysis. This knowledge is used to infer the potential compensatory interactions between kinases based on the changes in phosphorylation observed in the phosphoproteomics data from the yeast study. The results demonstrate the effectiveness of the Prolog-based approach in analysing complex cell signalling mechanisms in yeast. The inferred compensatory kinase networks provide new insights into the regulation of cell signalling in yeast and may aid in the identification of potential therapeutic targets for modulating signalling pathways in yeast and other organisms.

相關內容

In this study, we aimed to determine if fine-tuned large language models (LLMs) can generate accurate, personalized impressions for whole-body PET reports. Twelve language models were trained on a corpus of PET reports using the teacher-forcing algorithm, with the report findings as input and the clinical impressions as reference. An extra input token encodes the reading physician's identity, allowing models to learn physician-specific reporting styles. Our corpus comprised 37,370 retrospective PET reports collected from our institution between 2010 and 2022. To identify the best LLM, 30 evaluation metrics were benchmarked against quality scores from two nuclear medicine (NM) physicians, with the most aligned metrics selecting the model for expert evaluation. In a subset of data, model-generated impressions and original clinical impressions were assessed by three NM physicians according to 6 quality dimensions (3-point scale) and an overall utility score (5-point scale). Each physician reviewed 12 of their own reports and 12 reports from other physicians. Bootstrap resampling was used for statistical analysis. Of all evaluation metrics, domain-adapted BARTScore and PEGASUSScore showed the highest Spearman's rank correlations (0.568 and 0.563) with physician preferences. Based on these metrics, the fine-tuned PEGASUS model was selected as the top LLM. When physicians reviewed PEGASUS-generated impressions in their own style, 89% were considered clinically acceptable, with a mean utility score of 4.08 out of 5. Physicians rated these personalized impressions as comparable in overall utility to the impressions dictated by other physicians (4.03, P=0.41). In conclusion, personalized impressions generated by PEGASUS were clinically useful, highlighting its potential to expedite PET reporting.

Imitation learning is a powerful tool for training robot manipulation policies, allowing them to learn from expert demonstrations without manual programming or trial-and-error. However, common methods of data collection, such as human supervision, scale poorly, as they are time-consuming and labor-intensive. In contrast, Task and Motion Planning (TAMP) can autonomously generate large-scale datasets of diverse demonstrations. In this work, we show that the combination of large-scale datasets generated by TAMP supervisors and flexible Transformer models to fit them is a powerful paradigm for robot manipulation. To that end, we present a novel imitation learning system called OPTIMUS that trains large-scale visuomotor Transformer policies by imitating a TAMP agent. OPTIMUS introduces a pipeline for generating TAMP data that is specifically curated for imitation learning and can be used to train performant transformer-based policies. In this paper, we present a thorough study of the design decisions required to imitate TAMP and demonstrate that OPTIMUS can solve a wide variety of challenging vision-based manipulation tasks with over 70 different objects, ranging from long-horizon pick-and-place tasks, to shelf and articulated object manipulation, achieving 70 to 80% success rates. Video results and code at //mihdalal.github.io/optimus/

Traditional methods for learning with the presence of noisy labels have successfully handled datasets with artificially injected noise but still fall short of adequately handling real-world noise. With the increasing use of meta-learning in the diverse fields of machine learning, researchers leveraged auxiliary small clean datasets to meta-correct the training labels. Nonetheless, existing meta-label correction approaches are not fully exploiting their potential. In this study, we propose an Enhanced Meta Label Correction approach abbreviated as EMLC for the learning with noisy labels (LNL) problem. We re-examine the meta-learning process and introduce faster and more accurate meta-gradient derivations. We propose a novel teacher architecture tailored explicitly to the LNL problem, equipped with novel training objectives. EMLC outperforms prior approaches and achieves state-of-the-art results in all standard benchmarks. Notably, EMLC enhances the previous art on the noisy real-world dataset Clothing1M by $1.52\%$ while requiring $\times 0.5$ the time per epoch and with much faster convergence of the meta-objective when compared to the baseline approach.

There is a wide availability of methods for testing normality under the assumption of independent and identically distributed data. When data are dependent in space and/or time, however, assessing and testing the marginal behavior is considerably more challenging, as the marginal behavior is impacted by the degree of dependence. We propose a new approach to assess normality for dependent data by non-linearly incorporating existing statistics from normality tests as well as sample moments such as skewness and kurtosis through a neural network. We calibrate (deep) neural networks by simulated normal and non-normal data with a wide range of dependence structures and we determine the probability of rejecting the null hypothesis. We compare several approaches for normality tests and demonstrate the superiority of our method in terms of statistical power through an extensive simulation study. A real world application to global temperature data further demonstrates how the degree of spatio-temporal aggregation affects the marginal normality in the data.

Recently, various Artificial Intelligence (AI) based optimization metaheuristics are proposed and applied for a variety of problems. Cohort Intelligence (CI) algorithm is a socio inspired optimization technique which is successfully applied for solving several unconstrained & constrained real-world problems from the domains such as design, manufacturing, supply chain, healthcare, etc. Generally, real-world problems are constrained in nature. Even though most of the Evolutionary Algorithms (EAs) can efficiently solve unconstrained problems, their performance degenerates when the constraints are involved. In this paper, two novel constraint handling approaches based on modulus and hyperbolic tangent probability distributions are proposed. Constrained CI algorithm with constraint handling approaches based on triangular, modulus and hyperbolic tangent is presented and applied for optimizing advanced manufacturing processes such as Water Jet Machining (WJM), Abrasive Jet Machining (AJM), Ultrasonic Machining (USM) and Grinding process. The solutions obtained using proposed CI algorithm are compared with contemporary algorithms such as Genetic Algorithm, Simulated Annealing, Teaching Learning Based Optimization, etc. The proposed approaches achieved 2%-127% maximization of material removal rate satisfying hard constraints. As compared to the GA, CI with Hyperbolic tangent probability distribution achieved 15%, 2%, 2%, 127%, and 4% improvement in MRR for AJMB, AJMD, WJM, USM, and Grinding processes, respectively contributing to the productivity improvement. The contributions in this paper have opened several avenues for further applicability of the proposed constraint handling approaches for solving complex constrained problems.

We study active perception from first principles to argue that an autonomous agent performing active perception should maximize the mutual information that past observations posses about future ones. Doing so requires (a) a representation of the scene that summarizes past observations and the ability to update this representation to incorporate new observations (state estimation and mapping), (b) the ability to synthesize new observations of the scene (a generative model), and (c) the ability to select control trajectories that maximize predictive information (planning). This motivates a neural radiance field (NeRF)-like representation which captures photometric, geometric and semantic properties of the scene grounded. This representation is well-suited to synthesizing new observations from different viewpoints. And thereby, a sampling-based planner can be used to calculate the predictive information from synthetic observations along dynamically-feasible trajectories. We use active perception for exploring cluttered indoor environments and employ a notion of semantic uncertainty to check for the successful completion of an exploration task. We demonstrate these ideas via simulation in realistic 3D indoor environments.

We present a new approach, the Topograph, which reconstructs underlying physics processes, including the intermediary particles, by leveraging underlying priors from the nature of particle physics decays and the flexibility of message passing graph neural networks. The Topograph not only solves the combinatoric assignment of observed final state objects, associating them to their original mother particles, but directly predicts the properties of intermediate particles in hard scatter processes and their subsequent decays. In comparison to standard combinatoric approaches or modern approaches using graph neural networks, which scale exponentially or quadratically, the complexity of Topographs scales linearly with the number of reconstructed objects. We apply Topographs to top quark pair production in the all hadronic decay channel, where we outperform the standard approach and match the performance of the state-of-the-art machine learning technique.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司