In this paper, we consider the problem of determining the presence of a given signal in a high-dimensional observation with unknown covariance matrix by using an adaptive matched filter. Traditionally such filters are formed from the sample covariance matrix of some given training data, but, as is well-known, the performance of such filters is poor when the number of training data $n$ is not much larger than the data dimension $p$. We thus seek a covariance estimator to replace sample covariance. To account for the fact that $n$ and $p$ may be of comparable size, we adopt the "large-dimensional asymptotic model" in which $n$ and $p$ go to infinity in a fixed ratio. Under this assumption, we identify a covariance estimator that is asymptotically detection-theoretic optimal within a general shrinkage class inspired by C. Stein, and we give consistent estimates for conditional false-alarm and detection rate of the corresponding adaptive matched filter.
In the fields of statistics and unsupervised machine learning a fundamental and well-studied problem is anomaly detection. Anomalies are difficult to define, yet many algorithms have been proposed. Underlying the approaches is the nebulous understanding that anomalies are rare, unusual or inconsistent with the majority of data. The present work provides a philosophical treatise to clearly define anomalies and develops an algorithm for their efficient detection with minimal user intervention. Inspired by the Gestalt School of Psychology and the Helmholtz principle of human perception, anomalies are assumed to be observations that are unexpected to occur with respect to certain groupings made by the majority of the data. Under appropriate random variable modelling anomalies are directly found in a set of data by a uniform and independent random assumption of the distribution of constituent elements of the observations, with anomalies corresponding to those observations where the expectation of the number of occurrences of the elements in a given view is $<1$. Starting from fundamental principles of human perception an unsupervised anomaly detection algorithm is developed that is simple, real-time and parameter-free. Experiments suggest it as a competing choice for univariate data with promising results on the detection of global anomalies in multivariate data.
A theoretical, and potentially also practical, problem with stochastic gradient descent is that trajectories may escape to infinity. In this note, we investigate uniform boundedness properties of iterates and function values along the trajectories of the stochastic gradient descent algorithm and its important momentum variant. Under smoothness and $R$-dissipativity of the loss function, we show that broad families of step-sizes, including the widely used step-decay and cosine with (or without) restart step-sizes, result in uniformly bounded iterates and function values. Several important applications that satisfy these assumptions, including phase retrieval problems, Gaussian mixture models and some neural network classifiers, are discussed in detail.
We consider quantile estimation in a semi-supervised setting, characterized by two available data sets: (i) a small or moderate sized labeled data set containing observations for a response and a set of possibly high dimensional covariates, and (ii) a much larger unlabeled data set where only the covariates are observed. We propose a family of semi-supervised estimators for the response quantile(s) based on the two data sets, to improve the estimation accuracy compared to the supervised estimator, i.e., the sample quantile from the labeled data. These estimators use a flexible imputation strategy applied to the estimating equation along with a debiasing step that allows for full robustness against misspecification of the imputation model. Further, a one-step update strategy is adopted to enable easy implementation of our method and handle the complexity from the non-linear nature of the quantile estimating equation. Under mild assumptions, our estimators are fully robust to the choice of the nuisance imputation model, in the sense of always maintaining root-n consistency and asymptotic normality, while having improved efficiency relative to the supervised estimator. They also attain semi-parametric optimality if the relation between the response and the covariates is correctly specified via the imputation model. As an illustration of estimating the nuisance imputation function, we consider kernel smoothing type estimators on lower dimensional and possibly estimated transformations of the high dimensional covariates, and we establish novel results on their uniform convergence rates in high dimensions, involving responses indexed by a function class and usage of dimension reduction techniques. These results may be of independent interest. Numerical results on both simulated and real data confirm our semi-supervised approach's improved performance, in terms of both estimation and inference.
In this paper we consider $L_p$-approximation, $p \in \{2,\infty\}$, of periodic functions from weighted Korobov spaces. In particular, we discuss tractability properties of such problems, which means that we aim to relate the dependence of the information complexity on the error demand $\varepsilon$ and the dimension $d$ to the decay rate of the weight sequence $(\gamma_j)_{j \ge 1}$ assigned to the Korobov space. Some results have been well known since the beginning of this millennium, others have been proven quite recently. We give a survey of these findings and will add some new results on the $L_\infty$-approximation problem. To conclude, we give a concise overview of results and collect a number of interesting open problems.
We study the robust mean estimation problem in high dimensions, where less than half of the datapoints can be arbitrarily corrupted. Motivated by compressive sensing, we formulate the robust mean estimation problem as the minimization of the $\ell_0$-`norm' of an \emph{outlier indicator vector}, under a second moment constraint on the datapoints. We further relax the $\ell_0$-`norm' to the $\ell_p$-norm ($0<p\leq 1$) in the objective and prove that the global minima for each of these objectives are order-optimal for the robust mean estimation problem. Then we propose a computationally tractable iterative $\ell_p$-minimization and hard thresholding algorithm that outputs an order-optimal robust estimate of the population mean. Both synthetic and real data experiments demonstrate that the proposed algorithm outperforms state-of-the-art robust mean estimation methods. The source code will be made available at GitHub.
We consider the problem of finding tuned regularized parameter estimators for linear models. We start by showing that three known optimal linear estimators belong to a wider class of estimators that can be formulated as a solution to a weighted and constrained minimization problem. The optimal weights, however, are typically unknown in many applications. This begs the question, how should we choose the weights using only the data? We propose using the covariance fitting SPICE-methodology to obtain data-adaptive weights and show that the resulting class of estimators yields tuned versions of known regularized estimators - such as ridge regression, LASSO, and regularized least absolute deviation. These theoretical results unify several important estimators under a common umbrella. The resulting tuned estimators are also shown to be practically relevant by means of a number of numerical examples.
We study sparse linear regression over a network of agents, modeled as an undirected graph and no server node. The estimation of the $s$-sparse parameter is formulated as a constrained LASSO problem wherein each agent owns a subset of the $N$ total observations. We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm under high-dimensional scaling, allowing the ambient dimension $d$ to grow with (and possibly exceed) the sample size $N$. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions, suitable conditions on the network connectivity and algorithm tuning, the distributed algorithm converges globally at a {\it linear} rate to an estimate that is within the centralized {\it statistical precision} of the model, $O(s\log d/N)$. When $s\log d/N=o(1)$, a condition necessary for statistical consistency, an $\varepsilon$-optimal solution is attained after $\mathcal{O}(\kappa \log (1/\varepsilon))$ gradient computations and $O (\kappa/(1-\rho) \log (1/\varepsilon))$ communication rounds, where $\kappa$ is the restricted condition number of the loss function and $\rho$ measures the network connectivity. The computation cost matches that of the centralized projected gradient algorithm despite having data distributed; whereas the communication rounds reduce as the network connectivity improves. Overall, our study reveals interesting connections between statistical efficiency, network connectivity \& topology, and convergence rate in high dimensions.
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.
We introduce an algorithmic method for population anomaly detection based on gaussianization through an adversarial autoencoder. This method is applicable to detection of `soft' anomalies in arbitrarily distributed highly-dimensional data. A soft, or population, anomaly is characterized by a shift in the distribution of the data set, where certain elements appear with higher probability than anticipated. Such anomalies must be detected by considering a sufficiently large sample set rather than a single sample. Applications include, but not limited to, payment fraud trends, data exfiltration, disease clusters and epidemics, and social unrests. We evaluate the method on several domains and obtain both quantitative results and qualitative insights.
In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.