亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Concerns about representation in computing within the U.S. have driven numerous activities to broaden participation. Assessment of the impact of these efforts and, indeed, a clear assessment of the actual "problem" being addressed are limited by the nature of the most common data analysis which looks at the representation of each population as a percentage of the number of students graduating with a degree in computing. This use of a single metric cannot adequately assess the impact of broadening participation efforts. First, this approach fails to account for changing demographics of the undergraduate population in terms of overall numbers and relative proportion of the Federally designated gender, race, and ethnicity groupings. A second issue is that the majority of literature on broadening participation in computing (BPC) reports data on gender or on race/ethnicity, omitting data on students' intersectional identities. This leads to an incorrect understanding of both the data and the challenges we face as a field. In this paper we present several different approaches to tracking the impact of BPC efforts. We make three recommendations: 1) cohort-based analysis should be used to accurately show student engagement in computing; 2) the field as a whole needs to adopt the norm of always reporting intersectional data; 3) university demographic context matters when looking at how well a CS department is doing to broaden participation in computing, including longitudinal analysis of university demographic shifts that impact the local demographics of computing.

相關內容

Autonomous Vehicles (AVs) are prone to revolutionise the transportation industry. However, they must be thoroughly tested to avoid safety violations. Simulation testing plays a crucial role in finding safety violations of Automated Driving Systems (ADSs). This paper proposes PAFOT, a position-based approach testing framework, which generates adversarial driving scenarios to expose safety violations of ADSs. We introduce a 9-position grid which is virtually drawn around the Ego Vehicle (EV) and modify the driving behaviours of Non-Playable Characters (NPCs) to move within this grid. PAFOT utilises a single-objective genetic algorithm to search for adversarial test scenarios. We demonstrate PAFOT on a well-known high-fidelity simulator, CARLA. The experimental results show that PAFOT can effectively generate safety-critical scenarios to crash ADSs and is able to find collisions in a short simulation time. Furthermore, it outperforms other search-based testing techniques by finding more safety-critical scenarios under the same driving conditions within less effective simulation time.

We consider the problem of unfair discrimination between two groups and propose a pre-processing method to achieve fairness. Corrective methods like statistical parity usually lead to bad accuracy and do not really achieve fairness in situations where there is a correlation between the sensitive attribute S and the legitimate attribute E (explanatory variable) that should determine the decision. To overcome these drawbacks, other notions of fairness have been proposed, in particular, conditional statistical parity and equal opportunity. However, E is often not directly observable in the data, i.e., it is a latent variable. We may observe some other variable Z representing E, but the problem is that Z may also be affected by S, hence Z itself can be biased. To deal with this problem, we propose BaBE (Bayesian Bias Elimination), an approach based on a combination of Bayes inference and the Expectation-Maximization method, to estimate the most likely value of E for a given Z for each group. The decision can then be based directly on the estimated E. We show, by experiments on synthetic and real data sets, that our approach provides a good level of fairness as well as high accuracy.

Reverse engineering (RE) of finite state machines (FSMs) is a serious threat when protecting designs against RE attacks. While most recent protection techniques rely on the security of a secret key, this work presents a new approach: hardware FSM honeypots. These honeypots lead the RE tools to a wrong but, for the tools, very attractive FSM, while making the original FSM less attractive. The results show that state-of-the-art RE methods favor the highly attractive honeypot as FSM candidate or do no longer detect the correct, original FSM.

Generative Artificial Intelligence (AI) is integrated into everyday technology, including news, education, and social media. AI has further pervaded private conversations as conversational partners, auto-completion, and response suggestions. As social media becomes young people's main method of peer support exchange, we need to understand when and how AI can facilitate and assist in such exchanges in a beneficial, safe, and socially appropriate way. We asked 622 young people to complete an online survey and evaluate blinded human- and AI-generated responses to help-seeking messages. We found that participants preferred the AI-generated response to situations about relationships, self-expression, and physical health. However, when addressing a sensitive topic, like suicidal thoughts, young people preferred the human response. We also discuss the role of training in online peer support exchange and its implications for supporting young people's well-being. Disclaimer: This paper includes sensitive topics, including suicide ideation. Reader discretion is advised.

Pseudonyms are widely used in Cooperative Intelligent Transport Systems (C-ITS) to protect the location privacy of vehicles. However, the unlinkability nature of pseudonyms also enables Sybil attacks, where a malicious vehicle can pretend to be multiple vehicles at the same time. In this paper, we propose a novel protocol called zero-knowledge Proof of Distinct Identity (zk-PoDI,) which allows a vehicle to prove that it is not the owner of another pseudonym in the local area, without revealing its actual identity. Zk-PoDI is based on the Diophantine equation and zk-SNARK, and does not rely on any specific pseudonym design or infrastructure assistance. We show that zk-PoDI satisfies all the requirements for a practical Sybil-resistance pseudonym system, and it has low latency, adjustable difficulty, moderate computation overhead, and negligible communication cost. We also discuss the future work of implementing and evaluating zk-PoDI in a realistic city-scale simulation environment.

[Context and Motivation] Natural Language Processing (NLP) is now a cornerstone of requirements automation. One compelling factor behind the growing adoption of NLP in Requirements Engineering (RE) is the prevalent use of natural language (NL) for specifying requirements in industry. NLP techniques are commonly used for automatically classifying requirements, extracting important information, e.g., domain models and glossary terms, and performing quality assurance tasks, such as ambiguity handling and completeness checking. With so many different NLP solution strategies available and the possibility of applying machine learning alongside, it can be challenging to choose the right strategy for a specific RE task and to evaluate the resulting solution in an empirically rigorous manner. [Content] In this chapter, we present guidelines for the selection of NLP techniques as well as for their evaluation in the context of RE. In particular, we discuss how to choose among different strategies such as traditional NLP, feature-based machine learning, and language-model-based methods. [Contribution] Our ultimate hope for this chapter is to serve as a stepping stone, assisting newcomers to NLP4RE in quickly initiating themselves into the NLP technologies most pertinent to the RE field.

Nowadays, a majority of System-on-Chips (SoCs) make use of Intellectual Property (IP) in order to shorten development cycles. When such IPs are developed, one of the main focuses lies in the high configurability of the design. This flexibility on the design side introduces the challenge of covering a huge state space of IP configurations on the verification side to ensure the functional correctness under every possible parameter setting. The vast number of possibilities does not allow a brute-force approach, and therefore, only a selected number of settings based on typical and extreme assumptions are usually verified. Especially in automotive applications, which need to follow the ISO 26262 functional safety standard, the requirement of covering all significant variants needs to be fulfilled in any case. State-of-the-Art existing verification techniques such as simulation-based verification and formal verification have challenges such as time-space explosion and state-space explosion respectively and therefore, lack behind in verifying highly configurable digital designs efficiently. This paper is focused on a semi-formal verification methodology for efficient configuration coverage of highly configurable digital designs. The methodology focuses on reduced runtime based on simulative and formal methods that allow high configuration coverage. The paper also presents the results when the developed methodology was applied on a highly configurable microprocessor IP and discusses the gained benefits.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

北京阿比特科技有限公司