亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to a vertex in S . The domination number of G, denoted by $\gamma$(G), is the minimum cardinality of a dominating set in G. In a breakthrough paper in 2008, L{\"o}wenstein and Rautenbach proved that if G is a cubic graph of order n and girth at least 83, then $\gamma$(G) $\le$ n/3. A natural question is if this girth condition can be lowered. The question gave birth to two 1/3-conjectures for domination in cubic graphs. The first conjecture, posed by Verstraete in 2010, states that if G is a cubic graph on n vertices with girth at least 6, then $\gamma$(G) $\le$ n/3. The second conjecture, first posed as a question by Kostochka in 2009, states that if G is a cubic, bipartite graph of order n, then $\gamma$(G) $\le$n/3. In this paper, we prove Verstraete's conjecture when there is no 7-cycle and no 8-cycle, and we prove the Kostochka's related conjecture for bipartite graphs when there is no 4-cycle and no 8-cycle.

相關內容

Signed graphs are an emergent way of representing data in a variety of contexts were conflicting interactions exist. These include data from biological, ecological, and social systems. Here we propose the concept of communicability geometry for signed graphs, proving that metrics in this space, such as the communicability distance and angles, are Euclidean and spherical. We then apply these metrics to solve several problems in data analysis of signed graphs in a unified way. They include the partitioning of signed graphs, dimensionality reduction, finding hierarchies of alliances in signed networks as well as the quantification of the degree of polarization between the existing factions in systems represented by this type of graphs.

Maximum entropy (Maxent) models are a class of statistical models that use the maximum entropy principle to estimate probability distributions from data. Due to the size of modern data sets, Maxent models need efficient optimization algorithms to scale well for big data applications. State-of-the-art algorithms for Maxent models, however, were not originally designed to handle big data sets; these algorithms either rely on technical devices that may yield unreliable numerical results, scale poorly, or require smoothness assumptions that many practical Maxent models lack. In this paper, we present novel optimization algorithms that overcome the shortcomings of state-of-the-art algorithms for training large-scale, non-smooth Maxent models. Our proposed first-order algorithms leverage the Kullback-Leibler divergence to train large-scale and non-smooth Maxent models efficiently. For Maxent models with discrete probability distribution of $n$ elements built from samples, each containing $m$ features, the stepsize parameters estimation and iterations in our algorithms scale on the order of $O(mn)$ operations and can be trivially parallelized. Moreover, the strong $\ell_{1}$ convexity of the Kullback--Leibler divergence allows for larger stepsize parameters, thereby speeding up the convergence rate of our algorithms. To illustrate the efficiency of our novel algorithms, we consider the problem of estimating probabilities of fire occurrences as a function of ecological features in the Western US MTBS-Interagency wildfire data set. Our numerical results show that our algorithms outperform the state of the arts by one order of magnitude and yield results that agree with physical models of wildfire occurrence and previous statistical analyses of wildfire drivers.

To simplify the analysis of Boolean networks, a reduction in the number of components is often considered. A popular reduction method consists in eliminating components that are not autoregulated, using variable substitution. In this work, we show how this method can be extended, for asynchronous dynamics of Boolean networks, to the elimination of vertices that have a negative autoregulation, and study the effects on the dynamics and interaction structure. For elimination of non-autoregulated variables, the preservation of attractors is in general guaranteed only for fixed points. Here we give sufficient conditions for the preservation of complex attractors. The removal of so called mediator nodes (i.e. vertices with indegree and outdegree one) is often considered, and frequently does not affect the attractor landscape. We clarify that this is not always the case, and in some situations even subtle changes in the interaction structure can lead to a different asymptotic behaviour. Finally, we use properties of the more general elimination method introduced here to give an alternative proof for a bound on the number of attractors of asynchronous Boolean networks in terms of the cardinality of positive feedback vertex sets of the interaction graph.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

Data sets tend to live in low-dimensional non-linear subspaces. Ideal data analysis tools for such data sets should therefore account for such non-linear geometry. The symmetric Riemannian geometry setting can be suitable for a variety of reasons. First, it comes with a rich mathematical structure to account for a wide range of non-linear geometries that has been shown to be able to capture the data geometry through empirical evidence from classical non-linear embedding. Second, many standard data analysis tools initially developed for data in Euclidean space can also be generalised efficiently to data on a symmetric Riemannian manifold. A conceptual challenge comes from the lack of guidelines for constructing a symmetric Riemannian structure on the data space itself and the lack of guidelines for modifying successful algorithms on symmetric Riemannian manifolds for data analysis to this setting. This work considers these challenges in the setting of pullback Riemannian geometry through a diffeomorphism. The first part of the paper characterises diffeomorphisms that result in proper, stable and efficient data analysis. The second part then uses these best practices to guide construction of such diffeomorphisms through deep learning. As a proof of concept, different types of pullback geometries -- among which the proposed construction -- are tested on several data analysis tasks and on several toy data sets. The numerical experiments confirm the predictions from theory, i.e., that the diffeomorphisms generating the pullback geometry need to map the data manifold into a geodesic subspace of the pulled back Riemannian manifold while preserving local isometry around the data manifold for proper, stable and efficient data analysis, and that pulling back positive curvature can be problematic in terms of stability.

The family of bent functions is a known class of Boolean functions, which have a great importance in cryptography. The Cayley graph defined on $\mathbb{Z}_{2}^{n}$ by the support of a bent function is a strongly regular graph $srg(v,k\lambda,\mu)$, with $\lambda=\mu$. In this note we list the parameters of such Cayley graphs. Moreover, it is given a condition on $(n,m)$-bent functions $F=(f_1,\ldots,f_m)$, involving the support of their components $f_i$, and their $n$-ary symmetric differences.

The presented methodology for testing the goodness-of-fit of an Autoregressive Hilbertian model (ARH(1) model) provides an infinite-dimensional formulation of the approach proposed in Koul and Stute (1999), based on empirical process marked by residuals. Applying a central and functional central limit result for Hilbert-valued martingale difference sequences, the asymptotic behavior of the formulated H-valued empirical process, also indexed by H, is obtained under the null hypothesis. The limiting process is H-valued generalized (i.e., indexed by H) Wiener process, leading to an asymptotically distribution free test. Consistency of the test is also proved. The case of misspecified autocorrelation operator of the ARH(1) process is addressed. The asymptotic equivalence in probability, uniformly in the norm of H, of the empirical processes formulated under known and unknown autocorrelation operator is obtained. Beyond the Euclidean setting, this approach allows to implement goodness of fit testing in the context of manifold and spherical functional autoregressive processes.

This article is concerned with the multilevel Monte Carlo (MLMC) methods for approximating expectations of some functions of the solution to the Heston 3/2-model from mathematical finance, which takes values in $(0, \infty)$ and possesses superlinearly growing drift and diffusion coefficients. To discretize the SDE model, a new Milstein-type scheme is proposed to produce independent sample paths. The proposed scheme can be explicitly solved and is positivity-preserving unconditionally, i.e., for any time step-size $h>0$. This positivity-preserving property for large discretization time steps is particularly desirable in the MLMC setting. Furthermore, a mean-square convergence rate of order one is proved in the non-globally Lipschitz regime, which is not trivial, as the diffusion coefficient grows super-linearly. The obtained order-one convergence in turn promises the desired relevant variance of the multilevel estimator and justifies the optimal complexity $\mathcal{O}(\epsilon^{-2})$ for the MLMC approach, where $\epsilon > 0$ is the required target accuracy. Numerical experiments are finally reported to confirm the theoretical findings.

The central path problem is a variation on the single facility location problem. The aim is to find, in a given connected graph $G$, a path $P$ minimizing its eccentricity, which is the maximal distance from $P$ to any vertex of the graph $G$. The path eccentricity of $G$ is the minimal eccentricity achievable over all paths in $G$. In this article we consider the path eccentricity of the class of the $k$-AT-free graphs. They are graphs in which any set of three vertices contains a pair for which every path between them uses at least one vertex of the closed neighborhood at distance $k$ of the third. We prove that they have path eccentricity bounded by $k$. Moreover, we answer a question of G\'omez and Guti\'errez asking if there is a relation between path eccentricity and the consecutive ones property. The latter is the property for a binary matrix to admit a permutation of the rows placing the 1's consecutively on the columns. It was already known that graphs whose adjacency matrices have the consecutive ones property have path eccentricity at most 1, and that the same remains true when the augmented adjacency matrices (with ones on the diagonal) has the consecutive ones property. We generalize these results as follow. We study graphs whose adjacency matrices can be made to satisfy the consecutive ones property after changing some values on the diagonal, and show that those graphs have path eccentricity at most 2, by showing that they are 2-AT-free.

Multi-contrast (MC) Magnetic Resonance Imaging (MRI) reconstruction aims to incorporate a reference image of auxiliary modality to guide the reconstruction process of the target modality. Known MC reconstruction methods perform well with a fully sampled reference image, but usually exhibit inferior performance, compared to single-contrast (SC) methods, when the reference image is missing or of low quality. To address this issue, we propose DuDoUniNeXt, a unified dual-domain MRI reconstruction network that can accommodate to scenarios involving absent, low-quality, and high-quality reference images. DuDoUniNeXt adopts a hybrid backbone that combines CNN and ViT, enabling specific adjustment of image domain and k-space reconstruction. Specifically, an adaptive coarse-to-fine feature fusion module (AdaC2F) is devised to dynamically process the information from reference images of varying qualities. Besides, a partially shared shallow feature extractor (PaSS) is proposed, which uses shared and distinct parameters to handle consistent and discrepancy information among contrasts. Experimental results demonstrate that the proposed model surpasses state-of-the-art SC and MC models significantly. Ablation studies show the effectiveness of the proposed hybrid backbone, AdaC2F, PaSS, and the dual-domain unified learning scheme.

北京阿比特科技有限公司