亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose and implement a Privacy-preserving Federated Learning (PPFL) framework for mobile systems to limit privacy leakages in federated learning. Leveraging the widespread presence of Trusted Execution Environments (TEEs) in high-end and mobile devices, we utilize TEEs on clients for local training, and on servers for secure aggregation, so that model/gradient updates are hidden from adversaries. Challenged by the limited memory size of current TEEs, we leverage greedy layer-wise training to train each model's layer inside the trusted area until its convergence. The performance evaluation of our implementation shows that PPFL can significantly improve privacy while incurring small system overheads at the client-side. In particular, PPFL can successfully defend the trained model against data reconstruction, property inference, and membership inference attacks. Furthermore, it can achieve comparable model utility with fewer communication rounds (0.54x) and a similar amount of network traffic (1.002x) compared to the standard federated learning of a complete model. This is achieved while only introducing up to ~15% CPU time, ~18% memory usage, and ~21% energy consumption overhead in PPFL's client-side.

相關內容

聯(lian)邦(bang)學習(Federated Learning)是一(yi)種新(xin)(xin)興的(de)人(ren)工(gong)智能基礎技術,在 2016 年由谷歌最先提(ti)出,原本用(yong)于(yu)解決安(an)卓(zhuo)手機(ji)終端(duan)用(yong)戶在本地更新(xin)(xin)模型(xing)的(de)問(wen)題,其(qi)設計(ji)(ji)目(mu)標是在保障大數據交換時的(de)信(xin)息安(an)全、保護終端(duan)數據和個人(ren)數據隱私、保證合法合規的(de)前提(ti)下,在多參與(yu)方或多計(ji)(ji)算結點之(zhi)間(jian)開展高效率的(de)機(ji)器學習。其(qi)中(zhong),聯(lian)邦(bang)學習可使用(yong)的(de)機(ji)器學習算法不局限于(yu)神(shen)經網(wang)絡,還包括(kuo)隨機(ji)森林等重要算法。聯(lian)邦(bang)學習有望成為下一(yi)代人(ren)工(gong)智能協同(tong)算法和協作網(wang)絡的(de)基礎。

Lack of trust between organisations and privacy concerns about their data are impediments to an otherwise potentially symbiotic joint data analysis. We propose DataRing, a data sharing system that allows mutually mistrusting participants to query each others' datasets in a privacy-preserving manner while ensuring the correctness of input datasets and query answers even in the presence of (cheating) participants deviating from their true datasets. By relying on the assumption that if only a small subset of rows of the true dataset are known, participants cannot submit answers to queries deviating significantly from their true datasets. We employ differential privacy and a suite of cryptographic tools to ensure individual privacy for each participant's dataset and data confidentiality from the system. Our results show that the evaluation of 10 queries on a dataset with 10 attributes and 500,000 records is achieved in 90.63 seconds. DataRing could detect cheating participant that deviates from its true dataset in few queries with high accuracy.

Federated learning (FL) is a distributed learning paradigm in which many clients with heterogeneous, unbalanced, and often sensitive local data, collaborate to learn a model. Local Differential Privacy (LDP) provides a strong guarantee that each client's data cannot be leaked during and after training, without relying on a trusted third party. While LDP is often believed to be too stringent to allow for satisfactory utility, our paper challenges this belief. We consider a general setup with unbalanced, heterogeneous data, disparate privacy needs across clients, and unreliable communication, where a random number/subset of clients is available each round. We propose three LDP algorithms for smooth (strongly) convex FL; each are noisy variations of distributed minibatch SGD. One is accelerated and one involves novel time-varying noise, which we use to obtain the first non-trivial LDP excess risk bound for the fully general non-i.i.d. FL problem. Specializing to i.i.d. clients, our risk bounds interpolate between the best known and/or optimal bounds in the centralized setting and the cross-device setting, where each client represents just one person's data. Furthermore, we show that in certain regimes, our convergence rate (nearly) matches the corresponding non-private lower bound or outperforms state of the art non-private algorithms (``privacy for free''). Finally, we validate our theoretical results and illustrate the practical utility of our algorithm with numerical experiments.

By encoding computing tasks, coded computing can not only mitigate straggling problems in federated learning (FL), but also preserve privacy of sensitive data uploaded/contributed by participating mobile users (MUs) to the centralized server, owned by a mobile application provider (MAP). However, these advantages come with extra coding cost/complexity and communication overhead (referred to as \emph{privacy cost}) that must be considered given the limited computing/communications resources at MUs/MAP, the rationality and incentive competition among MUs in contributing data to the MAP. This article proposes a novel coded FL-based framework for a privacy-aware mobile application service to address these challenges. In particular, the MAP first determines a set of the best MUs for the FL process based on MUs' provided information/features. Then, each selected MU can propose a contract to the MAP according to its expected trainable local data and privacy-protected coded data. To find the optimal contracts that can maximize utilities of the MAP and all the participating MUs while maintaining high learning quality of the whole system, we first develop a multi-principal one-agent contract-based problem leveraging coded FL-based multiple utility functions under the MUs' privacy cost, the MAP's limited computing resource, and asymmetric information between the MAP and MUs. Then, we transform the problem into an equivalent low-complexity problem and develop an iterative algorithm to solve it. Experiments with a real-world dataset show that our framework can speed up training time up to 49% and improve prediction accuracy up to 4.6 times while enhancing network's social welfare, i.e., total utility of all participating entities, up to 114% under the privacy cost consideration compared with those of baseline methods.

Unsupervised image-to-image translation methods such as CycleGAN learn to convert images from one domain to another using unpaired training data sets from different domains. Unfortunately, these approaches still require centrally collected unpaired records, potentially violating privacy and security issues. Although the recent federated learning (FL) allows a neural network to be trained without data exchange, the basic assumption of the FL is that all clients have their own training data from a similar domain, which is different from our image-to-image translation scenario in which each client has images from its unique domain and the goal is to learn image translation between different domains without accessing the target domain data. To address this, here we propose a novel federated CycleGAN architecture that can learn image translation in an unsupervised manner while maintaining the data privacy. Specifically, our approach arises from a novel observation that CycleGAN loss can be decomposed into the sum of client specific local objectives that can be evaluated using only their data. This local objective decomposition allows multiple clients to participate in federated CycleGAN training without sacrificing performance. Furthermore, our method employs novel switchable generator and discriminator architecture using Adaptive Instance Normalization (AdaIN) that significantly reduces the band-width requirement of the federated learning. Our experimental results on various unsupervised image translation tasks show that our federated CycleGAN provides comparable performance compared to the non-federated counterpart.

Federated learning (FL) has been proposed to allow collaborative training of machine learning (ML) models among multiple parties where each party can keep its data private. In this paradigm, only model updates, such as model weights or gradients, are shared. Many existing approaches have focused on horizontal FL, where each party has the entire feature set and labels in the training data set. However, many real scenarios follow a vertically-partitioned FL setup, where a complete feature set is formed only when all the datasets from the parties are combined, and the labels are only available to a single party. Privacy-preserving vertical FL is challenging because complete sets of labels and features are not owned by one entity. Existing approaches for vertical FL require multiple peer-to-peer communications among parties, leading to lengthy training times, and are restricted to (approximated) linear models and just two parties. To close this gap, we propose FedV, a framework for secure gradient computation in vertical settings for several widely used ML models such as linear models, logistic regression, and support vector machines. FedV removes the need for peer-to-peer communication among parties by using functional encryption schemes; this allows FedV to achieve faster training times. It also works for larger and changing sets of parties. We empirically demonstrate the applicability for multiple types of ML models and show a reduction of 10%-70% of training time and 80% to 90% in data transfer with respect to the state-of-the-art approaches.

In this paper we present LiM ("Less is More"), a malware classification framework that leverages Federated Learning to detect and classify malicious apps in a privacy-respecting manner. Information about newly installed apps is kept locally on users' devices, so that the provider cannot infer which apps were installed by users. At the same time, input from all users is taken into account in the federated learning process and they all benefit from better classification performance. A key challenge of this setting is that users do not have access to the ground truth (i.e. they cannot correctly identify whether an app is malicious). To tackle this, LiM uses a safe semi-supervised ensemble that maximizes classification accuracy with respect to a baseline classifier trained by the service provider (i.e. the cloud). We implement LiM and show that the cloud server has F1 score of 95%, while clients have perfect recall with only 1 false positive in >100 apps, using a dataset of 25K clean apps and 25K malicious apps, 200 users and 50 rounds of federation. Furthermore, we conduct a security analysis and demonstrate that LiM is robust against both poisoning attacks by adversaries who control half of the clients, and inference attacks performed by an honest-but-curious cloud server. Further experiments with MaMaDroid's dataset confirm resistance against poisoning attacks and a performance improvement due to the federation.

Petabytes of data are generated each day by emerging Internet of Things (IoT), but only few of them can be finally collected and used for Machine Learning (ML) purposes due to the apprehension of data & privacy leakage, which seriously retarding ML's growth. To alleviate this problem, Federated learning is proposed to perform model training by multiple clients' combined data without the dataset sharing within the cluster. Nevertheless, federated learning introduces massive communication overhead as the synchronized data in each epoch is of the same size as the model, and thereby leading to a low communication efficiency. Consequently, variant methods mainly focusing on the communication rounds reduction and data compression are proposed to reduce the communication overhead of federated learning. In this paper, we propose Overlap-FedAvg, a framework that parallels the model training phase with model uploading & downloading phase, so that the latter phase can be totally covered by the former phase. Compared to vanilla FedAvg, Overlap-FedAvg is further developed with a hierarchical computing strategy, a data compensation mechanism and a nesterov accelerated gradients~(NAG) algorithm. Besides, Overlap-FedAvg is orthogonal to many other compression methods so that they can be applied together to maximize the utilization of the cluster. Furthermore, the theoretical analysis is provided to prove the convergence of the proposed Overlap-FedAvg framework. Extensive experiments on both conventional and recurrent tasks with multiple models and datasets also demonstrate that the proposed Overlap-FedAvg framework substantially boosts the federated learning process.

Graph neural network (GNN) is widely used for recommendation to model high-order interactions between users and items. Existing GNN-based recommendation methods rely on centralized storage of user-item graphs and centralized model learning. However, user data is privacy-sensitive, and the centralized storage of user-item graphs may arouse privacy concerns and risk. In this paper, we propose a federated framework for privacy-preserving GNN-based recommendation, which can collectively train GNN models from decentralized user data and meanwhile exploit high-order user-item interaction information with privacy well protected. In our method, we locally train GNN model in each user client based on the user-item graph inferred from the local user-item interaction data. Each client uploads the local gradients of GNN to a server for aggregation, which are further sent to user clients for updating local GNN models. Since local gradients may contain private information, we apply local differential privacy techniques to the local gradients to protect user privacy. In addition, in order to protect the items that users have interactions with, we propose to incorporate randomly sampled items as pseudo interacted items for anonymity. To incorporate high-order user-item interactions, we propose a user-item graph expansion method that can find neighboring users with co-interacted items and exchange their embeddings for expanding the local user-item graphs in a privacy-preserving way. Extensive experiments on six benchmark datasets validate that our approach can achieve competitive results with existing centralized GNN-based recommendation methods and meanwhile effectively protect user privacy.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

We detail a new framework for privacy preserving deep learning and discuss its assets. The framework puts a premium on ownership and secure processing of data and introduces a valuable representation based on chains of commands and tensors. This abstraction allows one to implement complex privacy preserving constructs such as Federated Learning, Secure Multiparty Computation, and Differential Privacy while still exposing a familiar deep learning API to the end-user. We report early results on the Boston Housing and Pima Indian Diabetes datasets. While the privacy features apart from Differential Privacy do not impact the prediction accuracy, the current implementation of the framework introduces a significant overhead in performance, which will be addressed at a later stage of the development. We believe this work is an important milestone introducing the first reliable, general framework for privacy preserving deep learning.

北京阿比特科技有限公司