亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We examine the problem of obtaining fair outcomes for individuals who choose to share optional information with machine-learned models and those who do not consent and keep their data undisclosed. We find that these non-consenting users receive significantly lower prediction outcomes than justified by their provided information alone. This observation gives rise to the overlooked problem of how to ensure that users, who protect their personal data, are not penalized. While statistical fairness notions focus on fair outcomes between advantaged and disadvantaged groups, these fairness notions fail to protect the non-consenting users. To address this problem, we formalize protection requirements for models which (i) allow users to benefit from sharing optional information and (ii) do not penalize them if they keep their data undisclosed. We offer the first solution to this problem by proposing the notion of Optional Feature Fairness (OFF), which we prove to be loss-optimal under our protection requirements (i) and (ii). To learn OFF-compliant models, we devise a model-agnostic data augmentation strategy with finite sample convergence guarantees. Finally, we extensively analyze OFF on a variety of challenging real-world tasks, models, and data sets with multiple optional features.

相關內容

Recent years have seen the ever-increasing importance of pre-trained models and their downstream training in deep learning research and applications. At the same time, the defense for adversarial examples has been mainly investigated in the context of training from random initialization on simple classification tasks. To better exploit the potential of pre-trained models in adversarial robustness, this paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks. Existing research has shown that since the robust pre-trained model has already learned a robust feature extractor, the crucial question is how to maintain the robustness in the pre-trained model when learning the downstream task. We study the model-based and data-based approaches for this goal and find that the two common approaches cannot achieve the objective of improving both generalization and adversarial robustness. Thus, we propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework, which consists of two neural networks where one of them keeps the population means and variances of pre-training data in the batch normalization layers. Besides the robust information transfer, TWINS increases the effective learning rate without hurting the training stability since the relationship between a weight norm and its gradient norm in standard batch normalization layer is broken, resulting in a faster escape from the sub-optimal initialization and alleviating the robust overfitting. Finally, TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness. Our code is available at //github.com/ziquanliu/CVPR2023-TWINS.

It is a common phenomenon that for high-dimensional and nonparametric statistical models, rate-optimal estimators balance squared bias and variance. Although this balancing is widely observed, little is known whether methods exist that could avoid the trade-off between bias and variance. We propose a general strategy to obtain lower bounds on the variance of any estimator with bias smaller than a prespecified bound. This shows to which extent the bias-variance trade-off is unavoidable and allows to quantify the loss of performance for methods that do not obey it. The approach is based on a number of abstract lower bounds for the variance involving the change of expectation with respect to different probability measures as well as information measures such as the Kullback-Leibler or $\chi^2$-divergence. In a second part of the article, the abstract lower bounds are applied to several statistical models including the Gaussian white noise model, a boundary estimation problem, the Gaussian sequence model and the high-dimensional linear regression model. For these specific statistical applications, different types of bias-variance trade-offs occur that vary considerably in their strength. For the trade-off between integrated squared bias and integrated variance in the Gaussian white noise model, we propose to combine the general strategy for lower bounds with a reduction technique. This allows us to reduce the original problem to a lower bound on the bias-variance trade-off for estimators with additional symmetry properties in a simpler statistical model. In the Gaussian sequence model, different phase transitions of the bias-variance trade-off occur. Although there is a non-trivial interplay between bias and variance, the rate of the squared bias and the variance do not have to be balanced in order to achieve the minimax estimation rate.

In order to better facilitate the need for continuous business process improvement, the application of DevOps principles has been proposed. In particular, the AB-BPM methodology applies AB testing and reinforcement learning to increase the speed and quality of improvement efforts. In this paper, we provide an industry perspective on this approach, assessing requirements, risks, opportunities, and more aspects of the AB-BPM methodology and supporting tools. Our qualitative analysis combines grounded theory with a Delphi study, including semi-structured interviews and multiple follow-up surveys with a panel of ten business process management experts. The main findings indicate a need for human control during reinforcement learning-driven experiments, the importance of aligning the methodology culturally and organizationally with the respective setting, and the necessity of an integrated process execution platform.

The traditional framework of federated learning (FL) requires each client to re-train their models in every iteration, making it infeasible for resource-constrained mobile devices to train deep-learning (DL) models. Split learning (SL) provides an alternative by using a centralized server to offload the computation of activations and gradients for a subset of the model but suffers from problems of slow convergence and lower accuracy. In this paper, we implement PFSL, a new framework of distributed split learning where a large number of thin clients perform transfer learning in parallel, starting with a pre-trained DL model without sharing their data or labels with a central server. We implement a lightweight step of personalization of client models to provide high performance for their respective data distributions. Furthermore, we evaluate performance fairness amongst clients under a work fairness constraint for various scenarios of non-i.i.d. data distributions and unequal sample sizes. Our accuracy far exceeds that of current SL algorithms and is very close to that of centralized learning on several real-life benchmarks. It has a very low computation cost compared to FL variants and promises to deliver the full benefits of DL to extremely thin, resource-constrained clients.

The problem of chemotherapy treatment optimization can be defined in order to minimize the size of the tumor without endangering the patient's health; therefore, chemotherapy requires to achieve a number of objectives, simultaneously. For this reason, the optimization problem turns to a multi-objective problem. In this paper, a multi-objective meta-heuristic method is provided for cancer chemotherapy with the aim of balancing between two objectives: the amount of toxicity and the number of cancerous cells. The proposed method uses mathematical models in order to measure the drug concentration, tumor growth and the amount of toxicity. This method utilizes a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm to optimize cancer chemotherapy plan using cell-cycle specific drugs. The proposed method can be a good model for personalized medicine as it returns a set of solutions as output that have balanced between different objectives and provided the possibility to choose the most appropriate therapeutic plan based on some information about the status of the patient. Experimental results confirm that the proposed method is able to explore the search space efficiently in order to find out the suitable treatment plan with minimal side effects. This main objective is provided using a desirable designing of chemotherapy drugs and controlling the injection dose. Moreover, results show that the proposed method achieve to a better therapeutic performance compared to a more recent similar method [1].

Federated learning (FL), an effective distributed machine learning framework, implements model training and meanwhile protects local data privacy. It has been applied to a broad variety of practice areas due to its great performance and appreciable profits. Who owns the model, and how to protect the copyright has become a real problem. Intuitively, the existing property rights protection methods in centralized scenarios (e.g., watermark embedding and model fingerprints) are possible solutions for FL. But they are still challenged by the distributed nature of FL in aspects of the no data sharing, parameter aggregation, and federated training settings. For the first time, we formalize the problem of copyright protection for FL, and propose FedRight to protect model copyright based on model fingerprints, i.e., extracting model features by generating adversarial examples as model fingerprints. FedRight outperforms previous works in four key aspects: (i) Validity: it extracts model features to generate transferable fingerprints to train a detector to verify the copyright of the model. (ii) Fidelity: it is with imperceptible impact on the federated training, thus promising good main task performance. (iii) Robustness: it is empirically robust against malicious attacks on copyright protection, i.e., fine-tuning, model pruning, and adaptive attacks. (iv) Black-box: it is valid in the black-box forensic scenario where only application programming interface calls to the model are available. Extensive evaluations across 3 datasets and 9 model structures demonstrate FedRight's superior fidelity, validity, and robustness.

Conscious states (states that there is something it is like to be in) seem both rich or full of detail, and ineffable or hard to fully describe or recall. The problem of ineffability, in particular, is a longstanding issue in philosophy that partly motivates the explanatory gap: the belief that consciousness cannot be reduced to underlying physical processes. Here, we provide an information theoretic dynamical systems perspective on the richness and ineffability of consciousness. In our framework, the richness of conscious experience corresponds to the amount of information in a conscious state and ineffability corresponds to the amount of information lost at different stages of processing. We describe how attractor dynamics in working memory would induce impoverished recollections of our original experiences, how the discrete symbolic nature of language is insufficient for describing the rich and high-dimensional structure of experiences, and how similarity in the cognitive function of two individuals relates to improved communicability of their experiences to each other. While our model may not settle all questions relating to the explanatory gap, it makes progress toward a fully physicalist explanation of the richness and ineffability of conscious experience: two important aspects that seem to be part of what makes qualitative character so puzzling.

Recent years have witnessed a remarkable success of large deep learning models. However, training these models is challenging due to high computational costs, painfully slow convergence, and overfitting issues. In this paper, we present Deep Incubation, a novel approach that enables the efficient and effective training of large models by dividing them into smaller sub-modules that can be trained separately and assembled seamlessly. A key challenge for implementing this idea is to ensure the compatibility of the independently trained sub-modules. To address this issue, we first introduce a global, shared meta model, which is leveraged to implicitly link all the modules together, and can be designed as an extremely small network with negligible computational overhead. Then we propose a module incubation algorithm, which trains each sub-module to replace the corresponding component of the meta model and accomplish a given learning task. Despite the simplicity, our approach effectively encourages each sub-module to be aware of its role in the target large model, such that the finally-learned sub-modules can collaborate with each other smoothly after being assembled. Empirically, our method outperforms end-to-end (E2E) training in terms of both final accuracy and training efficiency. For example, on top of ViT-Huge, it improves the accuracy by 2.7% on ImageNet or achieves similar performance with 4x less training time. Notably, the gains are significant for downstream tasks as well (e.g., object detection and image segmentation on COCO and ADE20K). Code is available at //github.com/LeapLabTHU/Deep-Incubation.

When students make a mistake in an exercise, they can consolidate it by ``similar exercises'' which have the same concepts, purposes and methods. Commonly, for a certain subject and study stage, the size of the exercise bank is in the range of millions to even tens of millions, how to find similar exercises for a given exercise becomes a crucial technical problem. Generally, we can assign a variety of explicit labels to the exercise, and then query through the labels, but the label annotation is time-consuming, laborious and costly, with limited precision and granularity, so it is not feasible. In practice, we define ``similar exercises'' as a retrieval process of finding a set of similar exercises based on recall, ranking and re-rank procedures, called the \textbf{FSE} problem (Finding similar exercises). Furthermore, comprehensive representation of the semantic information of exercises was obtained through representation learning. In addition to the reasonable architecture, we also explore what kind of tasks are more conducive to the learning of exercise semantic information from pre-training and supervised learning. It is difficult to annotate similar exercises and the annotation consistency among experts is low. Therefore this paper also provides solutions to solve the problem of low-quality annotated data. Compared with other methods, this paper has obvious advantages in both architecture rationality and algorithm precision, which now serves the daily teaching of hundreds of schools.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司