亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study introduces a methodology integrating Zero Trust Architecture (ZTA) principles and Transparent Shaping into an AWS-hosted Online File Manager (OFM) application, enhancing security without substantial code modifications. We evaluate our approach with the Mozilla Observatory, highlighting significant security improvements and outlining a promising direction for applying Transparent Shaping and ZTA in cloud environments.

相關內容

This study assesses the ability of Large Vision-Language Models (LVLMs) to differentiate between AI-generated and human-generated images. It introduces a new automated benchmark construction method for this evaluation. The experiment compared common LVLMs with human participants using a mixed dataset of AI and human-created images. Results showed that LVLMs could distinguish between the image types to some extent but exhibited a rightward bias, and perform significantly worse compared to humans. To build on these findings, we developed an automated benchmark construction process using AI. This process involved topic retrieval, narrative script generation, error embedding, and image generation, creating a diverse set of text-image pairs with intentional errors. We validated our method through constructing two caparable benchmarks. This study highlights the strengths and weaknesses of LVLMs in real-world understanding and advances benchmark construction techniques, providing a scalable and automatic approach for AI model evaluation.

We present a large-scale study of linguistic bias exhibited by ChatGPT covering ten dialects of English (Standard American English, Standard British English, and eight widely spoken non-"standard" varieties from around the world). We prompted GPT-3.5 Turbo and GPT-4 with text by native speakers of each variety and analyzed the responses via detailed linguistic feature annotation and native speaker evaluation. We find that the models default to "standard" varieties of English; based on evaluation by native speakers, we also find that model responses to non-"standard" varieties consistently exhibit a range of issues: lack of comprehension (10% worse compared to "standard" varieties), stereotyping (16% worse), demeaning content (22% worse), and condescending responses (12% worse). We also find that if these models are asked to imitate the writing style of prompts in non-"standard" varieties, they produce text that exhibits lower comprehension of the input and is especially prone to stereotyping. GPT-4 improves on GPT-3.5 in terms of comprehension, warmth, and friendliness, but it also results in a marked increase in stereotyping (+17%). The results suggest that GPT-3.5 Turbo and GPT-4 exhibit linguistic discrimination in ways that can exacerbate harms for speakers of non-"standard" varieties.

This study is among the first to develop different prototypes of generative AI (GenAI) chatbots powered by GPT 4 to communicate hurricane preparedness information to diverse residents. Drawing from the Computers Are Social Actors (CASA) paradigm and the literature on disaster vulnerability and cultural tailoring, this study conducted a between-subjects experiment with 441 Black, Hispanic, and Caucasian residents of Florida. A computational analysis of chat logs (N = 7,848) shows that anthropomorphism and personalization are key communication topics in GenAI chatbot-user interactions. SEM results (N = 441) suggest that GenAI chatbots varying in tone formality and cultural tailoring significantly predict bot perceptions and, subsequently, hurricane preparedness outcomes. These results highlight the potential of using GenAI chatbots to improve diverse communities' disaster preparedness.

Recent studies on the Shapes Constraint Language (SHACL), a W3C specification for validating RDF graphs, rely on translating the language into first-order logic in order to provide formally-grounded solutions to the validation, containment and satisfiability decision problems. Continuing on this line of research, we introduce SHACL2FOL, the first automatic tool that (i) translates SHACL documents into FOL sentences and (ii) computes the answer to the two static analysis problems of satisfiability and containment; it also allow to test the validity of a graph with respect to a set of constraints. By integrating with existing theorem provers, such as E and Vampire, the tool computes the answer to the aforementioned decision problems and outputs the corresponding first-order logic theories in the standard TPTP format. We believe this tool can contribute to further theoretical studies of SHACL, by providing an automatic first-order logic interpretation of its semantics, while also benefiting SHACL practitioners, by supplying static analysis capabilities to help the creation and management of SHACL constraints.

Machine Translation (MT) Quality Estimation (QE) assesses translation reliability without reference texts. This study introduces "textual similarity" as a new metric for QE, using sentence transformers and cosine similarity to measure semantic closeness. Analyzing data from the MLQE-PE dataset, we found that textual similarity exhibits stronger correlations with human scores than traditional metrics (hter, model evaluation etc.). Employing GAMMs as a statistical tool, we demonstrated that textual similarity consistently outperforms other metrics across multiple language pairs in predicting human scores. We also found that "hter" actually failed to predict human scores in QE. Our findings highlight the effectiveness of textual similarity as a robust QE metric, recommending its integration with other metrics into QE frameworks and MT system training for improved accuracy and usability.

Since the emergence of GPT-3, Large Language Models (LLMs) have caught the eyes of researchers, practitioners, and educators in the field of software engineering. However, there has been relatively little investigation regarding the performance of LLMs in assisting with requirements analysis and UML modeling. This paper explores how LLMs can assist novice analysts in creating three types of typical UML models: use case models, class diagrams, and sequence diagrams. For this purpose, we designed the modeling tasks of these three UML models for 45 undergraduate students who participated in a requirements modeling course, with the help of LLMs. By analyzing their project reports, we found that LLMs can assist undergraduate students as novice analysts in UML modeling tasks, but LLMs also have shortcomings and limitations that should be considered when using them.

We study the limitations of Large Language Models (LLMs) for the task of response generation in human-machine dialogue. Several techniques have been proposed in the literature for different dialogue types (e.g., Open-Domain). However, the evaluations of these techniques have been limited in terms of base LLMs, dialogue types and evaluation metrics. In this work, we extensively analyze different LLM adaptation techniques when applied to different dialogue types. We have selected two base LLMs, Llama-2 and Mistral, and four dialogue types Open-Domain, Knowledge-Grounded, Task-Oriented, and Question Answering. We evaluate the performance of in-context learning and fine-tuning techniques across datasets selected for each dialogue type. We assess the impact of incorporating external knowledge to ground the generation in both scenarios of Retrieval-Augmented Generation (RAG) and gold knowledge. We adopt consistent evaluation and explainability criteria for automatic metrics and human evaluation protocols. Our analysis shows that there is no universal best-technique for adapting large language models as the efficacy of each technique depends on both the base LLM and the specific type of dialogue. Last but not least, the assessment of the best adaptation technique should include human evaluation to avoid false expectations and outcomes derived from automatic metrics.

We consider the computational efficiency of Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods applied to partial differential equations with random coefficients. These arise, for example, in groundwater flow modelling, where a commonly used model for the unknown parameter is a random field. We make use of the circulant embedding procedure for sampling from the aforementioned coefficient. To improve the computational complexity of the MLMC estimator in the case of highly oscillatory random fields, we devise and implement a smoothing technique integrated into the circulant embedding method. This allows to choose the coarsest mesh on the first level of MLMC independently of the correlation length of the covariance function of the random field, leading to considerable savings in computational cost. We illustrate this with numerical experiments, where we see a saving of factor 5-10 in computational cost for accuracies of practical interest.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.

北京阿比特科技有限公司