Missing data is a widespread problem in many domains, creating challenges in data analysis and decision making. Traditional techniques for dealing with missing data, such as excluding incomplete records or imputing simple estimates (e.g., mean), are computationally efficient but may introduce bias and disrupt variable relationships, leading to inaccurate analyses. Model-based imputation techniques offer a more robust solution that preserves the variability and relationships in the data, but they demand significantly more computation time, limiting their applicability to small datasets. This work enables efficient, high-quality, and scalable data imputation within a database system using the widely used MICE method. We adapt this method to exploit computation sharing and a ring abstraction for faster model training. To impute both continuous and categorical values, we develop techniques for in-database learning of stochastic linear regression and Gaussian discriminant analysis models. Our MICE implementations in PostgreSQL and DuckDB outperform alternative MICE implementations and model-based imputation techniques by up to two orders of magnitude in terms of computation time, while maintaining high imputation quality.
We introduce the concept of geometry-informed neural networks (GINNs), which encompass (i) learning under geometric constraints, (ii) neural fields as a suitable representation, and (iii) generating diverse solutions to under-determined systems often encountered in geometric tasks. Notably, the GINN formulation does not require training data, and as such can be considered generative modeling driven purely by constraints. We add an explicit diversity loss to mitigate mode collapse. We consider several constraints, in particular, the connectedness of components which we convert to a differentiable loss through Morse theory. Experimentally, we demonstrate the efficacy of the GINN learning paradigm across a range of two and three-dimensional scenarios with increasing levels of complexity.
Federated Learning (FL) is a distributed machine learning paradigm that allows clients to train models on their data while preserving their privacy. FL algorithms, such as Federated Averaging (FedAvg) and its variants, have been shown to converge well in many scenarios. However, these methods require clients to upload their local updates to the server in a synchronous manner, which can be slow and unreliable in realistic FL settings. To address this issue, researchers have developed asynchronous FL methods that allow clients to continue training on their local data using a stale global model. However, most of these methods simply aggregate all of the received updates without considering their relative contributions, which can slow down convergence. In this paper, we propose a contribution-aware asynchronous FL method that takes into account the staleness and statistical heterogeneity of the received updates. Our method dynamically adjusts the contribution of each update based on these factors, which can speed up convergence compared to existing methods.
We show that the mechanism-design problem for a monopolist selling multiple, heterogeneous objects to a buyer with ex ante symmetric and additive values is equivalent to the mechanism-design problem for a monopolist selling identical objects to a buyer with decreasing marginal values. We derive three new results for the identical-objects model: (i) a sufficient condition on priors, such that prices in optimal deterministic mechanism are not increasing, (ii) a simplification of incentive constraints for deterministic mechanisms, and (iii) a new condition for revenue monotonicity of stochastic mechanisms. We use the equivalence to establish corresponding results in the heterogeneous-objects model.
Quantization has emerged as a promising direction for model compression. Recently, data-free quantization has been widely studied as a promising method to avoid privacy concerns, which synthesizes images as an alternative to real training data. Existing methods use classification loss to ensure the reliability of the synthesized images. Unfortunately, even if these images are well-classified by the pre-trained model, they still suffer from low semantics and homogenization issues. Intuitively, these low-semantic images are sensitive to perturbations, and the pre-trained model tends to have inconsistent output when the generator synthesizes an image with poor semantics. To this end, we propose Robustness-Guided Image Synthesis (RIS), a simple but effective method to enrich the semantics of synthetic images and improve image diversity, further boosting the performance of downstream data-free compression tasks. Concretely, we first introduce perturbations on input and model weight, then define the inconsistency metrics at feature and prediction levels before and after perturbations. On the basis of inconsistency on two levels, we design a robustness optimization objective to enhance the semantics of synthetic images. Moreover, we also make our approach diversity-aware by forcing the generator to synthesize images with small correlations in the label space. With RIS, we achieve state-of-the-art performance for various settings on data-free quantization and can be extended to other data-free compression tasks.
We study a three-layer data market comprising users (data owners), platforms, and a data buyer. Each user benefits from platform services in exchange for data, incurring privacy loss when their data, albeit noisily, is shared with the buyer. The user chooses platforms to share data with, while platforms decide on data noise levels and pricing before selling to the buyer. The buyer selects platforms to purchase data from. We model these interactions via a multi-stage game, focusing on the subgame Nash equilibrium. We find that when the buyer places a high value on user data (and platforms can command high prices), all platforms offer services to the user who joins and shares data with every platform. Conversely, when the buyer's valuation of user data is low, only large platforms with low service costs can afford to serve users. In this scenario, users exclusively join and share data with these low-cost platforms. Interestingly, increased competition benefits the buyer, not the user: as the number of platforms increases, the user utility does not necessarily improve while the buyer utility improves. However, increasing the competition improves the overall utilitarian welfare. Building on our analysis, we then study regulations to improve the user utility. We discover that banning data sharing maximizes user utility only when all platforms are low-cost. In mixed markets of high- and low-cost platforms, users prefer a minimum noise mandate over a sharing ban. Imposing this mandate on high-cost platforms and banning data sharing for low-cost ones further enhances user utility.
Recent work has shown it is possible to construct adversarial examples that cause an aligned language model to emit harmful strings or perform harmful behavior. Existing attacks work either in the white-box setting (with full access to the model weights), or through transferability: the phenomenon that adversarial examples crafted on one model often remain effective on other models. We improve on prior work with a query-based attack that leverages API access to a remote language model to construct adversarial examples that cause the model to emit harmful strings with (much) higher probability than with transfer-only attacks. We validate our attack on GPT-3.5 and OpenAI's safety classifier; we can cause GPT-3.5 to emit harmful strings that current transfer attacks fail at, and we can evade the safety classifier with nearly 100% probability.
Conversational search facilitates complex information retrieval by enabling multi-turn interactions between users and the system. Supporting such interactions requires a comprehensive understanding of the conversational inputs to formulate a good search query based on historical information. In particular, the search query should include the relevant information from the previous conversation turns. However, current approaches for conversational dense retrieval primarily rely on fine-tuning a pre-trained ad-hoc retriever using the whole conversational search session, which can be lengthy and noisy. Moreover, existing approaches are limited by the amount of manual supervision signals in the existing datasets. To address the aforementioned issues, we propose a History-Aware Conversational Dense Retrieval (HAConvDR) system, which incorporates two ideas: context-denoised query reformulation and automatic mining of supervision signals based on the actual impact of historical turns. Experiments on two public conversational search datasets demonstrate the improved history modeling capability of HAConvDR, in particular for long conversations with topic shifts.
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.