Spatial voting models of legislators' preferences are used in political science to test theories about their voting behavior. These models posit that legislators' ideologies as well as the ideologies reflected in votes for and against a bill or measure exist as points in some low dimensional space, and that legislators vote for positions that are close to their own ideologies. Bayesian spatial voting models have been developed to test sharp hypotheses about whether a legislator's revealed ideal point differs for two distinct sets of bills. This project extends such a model to identify covariates that explain whether legislators exhibit such differences in ideal points. We use our method to examine voting behavior on procedural versus final passage votes in the U.S. house of representatives for the 93rd through 113th congresses. The analysis provides evidence that legislators in the minority party as well as legislators with a moderate constituency are more likely to have different ideal points for procedural versus final passage votes.
Recent theoretical results in quantum machine learning have demonstrated a general trade-off between the expressive power of quantum neural networks (QNNs) and their trainability; as a corollary of these results, practical exponential separations in expressive power over classical machine learning models are believed to be infeasible as such QNNs take a time to train that is exponential in the model size. We here circumvent these negative results by constructing a hierarchy of efficiently trainable QNNs that exhibit unconditionally provable, polynomial memory separations of arbitrary constant degree over classical neural networks in performing a classical sequence modeling task. Furthermore, each unit cell of the introduced class of QNNs is computationally efficient, implementable in constant time on a quantum device. The classical networks we prove a separation over include well-known examples such as recurrent neural networks and Transformers. We show that quantum contextuality is the source of the expressivity separation, suggesting that other classical sequence learning problems with long-time correlations may be a regime where practical advantages in quantum machine learning may exist.
Foundation models have recently expanded into robotics after excelling in computer vision and natural language processing. The models are accessible in two ways: open-source or paid, closed-source options. Users with access to both face a problem when deciding between effective yet costly closed-source models and free but less powerful open-source alternatives. We call it the model selection problem. Existing supervised-learning methods are impractical due to the high cost of collecting extensive training data from closed-source models. Hence, we focus on the online learning setting where algorithms learn while collecting data, eliminating the need for large pre-collected datasets. We thus formulate a user-centric online model selection problem and propose a novel solution that combines an open-source encoder to output context and an online learning algorithm that processes this context. The encoder distills vast data distributions into low-dimensional features, i.e., the context, without additional training. The online learning algorithm aims to maximize a composite reward that includes model performance, execution time, and costs based on the context extracted from the data. It results in an improved trade-off between selecting open-source and closed-source models compared to non-contextual methods, as validated by our theoretical analysis. Experiments across language-based robotic tasks such as Waymo Open Dataset, ALFRED, and Open X-Embodiment demonstrate real-world applications of the solution. The results show that the solution significantly improves the task success rate by up to 14%.
Diffusion models suffer from slow sample generation at inference time. Despite recent efforts, improving the sampling efficiency of stochastic samplers for diffusion models remains a promising direction. We propose Splitting Integrators for fast stochastic sampling in pre-trained diffusion models in augmented spaces. Commonly used in molecular dynamics, splitting-based integrators attempt to improve sampling efficiency by cleverly alternating between numerical updates involving the data, auxiliary, or noise variables. However, we show that a naive application of splitting integrators is sub-optimal for fast sampling. Consequently, we propose several principled modifications to naive splitting samplers for improving sampling efficiency and denote the resulting samplers as Reduced Splitting Integrators. In the context of Phase Space Langevin Diffusion (PSLD) [Pandey \& Mandt, 2023] on CIFAR-10, our stochastic sampler achieves an FID score of 2.36 in only 100 network function evaluations (NFE) as compared to 2.63 for the best baselines.
The problem of fitting concentric ellipses is a vital problem in image processing, pattern recognition, and astronomy. Several methods have been developed but all address very special cases. In this paper, this problem has been investigated under a more general setting, and two estimators for estimating the parameters have been proposed. Since both estimators are obtained iterative fashion, several numerical schemes are investigated and the best initial guess is determined. Furthermore, the constraint Cram\'{e} Rao lower bound for this problem is derived and it is compared with the variance of each estimator. Finally, our theory is assessed and validated by a series of numerical experiments on both real and synthetic data.
While the inverse probability of treatment weighting (IPTW) is a commonly used approach for treatment comparisons in observational data, the resulting estimates may be subject to bias and excessively large variance when there is lack of overlap in the propensity score distributions. By smoothly down-weighting the units with extreme propensity scores, overlap weighting (OW) can help mitigate the bias and variance issues associated with IPTW. Although theoretical and simulation results have supported the use of OW with continuous and binary outcomes, its performance with right-censored survival outcomes remains to be further investigated, especially when the target estimand is defined based on the restricted mean survival time (RMST)-a clinically meaningful summary measure free of the proportional hazards assumption. In this article, we combine propensity score weighting and inverse probability of censoring weighting to estimate the restricted mean counterfactual survival times, and propose computationally-efficient variance estimators. We conduct simulations to compare the performance of IPTW, trimming, and OW in terms of bias, variance, and 95% confidence interval coverage, under various degrees of covariate overlap. Regardless of overlap, we demonstrate the advantage of OW over IPTW and trimming methods in bias, variance, and coverage when the estimand is defined based on RMST.
This paper considers the robust phase retrieval problem, which can be cast as a nonsmooth and nonconvex optimization problem. We propose a new inexact proximal linear algorithm with the subproblem being solved inexactly. Our contributions are two adaptive stopping criteria for the subproblem. The convergence behavior of the proposed methods is analyzed. Through experiments on both synthetic and real datasets, we demonstrate that our methods are much more efficient than existing methods, such as the original proximal linear algorithm and the subgradient method.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.