Self-supervised facial representation has recently attracted increasing attention due to its ability to perform face understanding without relying on large-scale annotated datasets heavily. However, analytically, current contrastive-based self-supervised learning (SSL) still performs unsatisfactorily for learning facial representation. More specifically, existing contrastive learning (CL) tends to learn pose-invariant features that cannot depict the pose details of faces, compromising the learning performance. To conquer the above limitation of CL, we propose a novel Pose-disentangled Contrastive Learning (PCL) method for general self-supervised facial representation. Our PCL first devises a pose-disentangled decoder (PDD) with a delicately designed orthogonalizing regulation, which disentangles the pose-related features from the face-aware features; therefore, pose-related and other pose-unrelated facial information could be performed in individual subnetworks and do not affect each other's training. Furthermore, we introduce a pose-related contrastive learning scheme that learns pose-related information based on data augmentation of the same image, which would deliver more effective face-aware representation for various downstream tasks. We conducted linear evaluation on four challenging downstream facial understanding tasks, ie, facial expression recognition, face recognition, AU detection and head pose estimation. Experimental results demonstrate that our method significantly outperforms state-of-the-art SSL methods. Code is available at //github.com/DreamMr/PCL}{//github.com/DreamMr/PCL
Contrastive learning methods have attracted considerable attention due to their remarkable success in analyzing graph-structured data. Inspired by the success of contrastive learning, we propose a novel framework for contrastive disentangled learning on graphs, employing a disentangled graph encoder and two carefully crafted self-supervision signals. Specifically, we introduce a disentangled graph encoder to enforce the framework to distinguish various latent factors corresponding to underlying semantic information and learn the disentangled node embeddings. Moreover, to overcome the heavy reliance on labels, we design two self-supervision signals, namely node specificity and channel independence, which capture informative knowledge without the need for labeled data, thereby guiding the automatic disentanglement of nodes. Finally, we perform node classification tasks on three citation networks by using the disentangled node embeddings, and the relevant analysis is provided. Experimental results validate the effectiveness of the proposed framework compared with various baselines.
Perception datasets for agriculture are limited both in quantity and diversity which hinders effective training of supervised learning approaches. Self-supervised learning techniques alleviate this problem, however, existing methods are not optimized for dense prediction tasks in agriculture domains which results in degraded performance. In this work, we address this limitation with our proposed Injected Noise Discriminator (INoD) which exploits principles of feature replacement and dataset discrimination for self-supervised representation learning. INoD interleaves feature maps from two disjoint datasets during their convolutional encoding and predicts the dataset affiliation of the resultant feature map as a pretext task. Our approach enables the network to learn unequivocal representations of objects seen in one dataset while observing them in conjunction with similar features from the disjoint dataset. This allows the network to reason about higher-level semantics of the entailed objects, thus improving its performance on various downstream tasks. Additionally, we introduce the novel Fraunhofer Potato 2022 dataset consisting of over 16,800 images for object detection in potato fields. Extensive evaluations of our proposed INoD pretraining strategy for the tasks of object detection, semantic segmentation, and instance segmentation on the Sugar Beets 2016 and our potato dataset demonstrate that it achieves state-of-the-art performance.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.
Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-) supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like computer vision and natural language processing, SSL on graphs has an exclusive background, design ideas, and taxonomies. Under the umbrella of graph self-supervised learning, we present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data. We construct a unified framework that mathematically formalizes the paradigm of graph SSL. According to the objectives of pretext tasks, we divide these approaches into four categories: generation-based, auxiliary property-based, contrast-based, and hybrid approaches. We further conclude the applications of graph SSL across various research fields and summarize the commonly used datasets, evaluation benchmark, performance comparison and open-source codes of graph SSL. Finally, we discuss the remaining challenges and potential future directions in this research field.
Deep supervised learning has achieved great success in the last decade. However, its deficiencies of dependence on manual labels and vulnerability to attacks have driven people to explore a better solution. As an alternative, self-supervised learning attracts many researchers for its soaring performance on representation learning in the last several years. Self-supervised representation learning leverages input data itself as supervision and benefits almost all types of downstream tasks. In this survey, we take a look into new self-supervised learning methods for representation in computer vision, natural language processing, and graph learning. We comprehensively review the existing empirical methods and summarize them into three main categories according to their objectives: generative, contrastive, and generative-contrastive (adversarial). We further investigate related theoretical analysis work to provide deeper thoughts on how self-supervised learning works. Finally, we briefly discuss open problems and future directions for self-supervised learning. An outline slide for the survey is provided.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).