亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A pure quantum state of $n$ parties associated with the Hilbert space $\CC^{d_1}\otimes \CC^{d_2}\otimes\cdots\otimes \CC^{d_n}$ is called $k$-uniform if all the reductions to $k$-parties are maximally mixed. The $n$ partite system is called homogenous if the local dimension $d_1=d_2=\cdots=d_n$, while it is called heterogeneous if the local dimension are not all equal. $k$-uniform sates play an important role in quantum information theory. There are many progress in characterizing and constructing $k$-uniform states in homogeneous systems. However, the study of entanglement for heterogeneous systems is much more challenging than that for the homogeneous case. There are very few results known for the $k$-uniform states in heterogeneous systems for $k>3$. We present two general methods to construct $k$-uniform states in the heterogeneous systems for general $k$. The first construction is derived from the error correcting codes by establishing a connection between irredundant mixed orthogonal arrays and error correcting codes. We can produce many new $k$-uniform states such that the local dimension of each subsystem can be a prime power. The second construction is derived from a matrix $H$ meeting the condition that $H_{A\times \bar{A}}+H^T_{\bar{A}\times A}$ has full rank for any row index set $A$ of size $k$. These matrix construction can provide more flexible choices for the local dimensions, i.e., the local dimensions can be any integer (not necessarily prime power) subject to some constraints. Our constructions imply that for any positive integer $k$, one can construct $k$-uniform states of a heterogeneous system in many different Hilbert spaces.

相關內容

Range Avoidance (AVOID) is a total search problem where, given a Boolean circuit $C\colon\{0,1\}^n\to\{0,1\}^m$, $m>n$, the task is to find a $y\in\{0,1\}^m$ outside the range of $C$. For an integer $k\geq 2$, $\mathrm{NC}^0_k$-AVOID is a special case of AVOID where each output bit of $C$ depends on at most $k$ input bits. While there is a very natural randomized algorithm for AVOID, a deterministic algorithm for the problem would have many interesting consequences. Ren, Santhanam, and Wang (FOCS 2022) and Guruswami, Lyu, and Wang (RANDOM 2022) proved that explicit constructions of functions of high formula complexity, rigid matrices, and optimal linear codes, reduce to $\mathrm{NC}^0_4$-AVOID, thus establishing conditional hardness of the $\mathrm{NC}^0_4$-AVOID problem. On the other hand, $\mathrm{NC}^0_2$-AVOID admits polynomial-time algorithms, leaving the question about the complexity of $\mathrm{NC}^0_3$-AVOID open. We give the first reduction of an explicit construction question to $\mathrm{NC}^0_3$-AVOID. Specifically, we prove that a polynomial-time algorithm (with an $\mathrm{NP}$ oracle) for $\mathrm{NC}^0_3$-AVOID for the case of $m=n+n^{2/3}$ would imply an explicit construction of a rigid matrix, and, thus, a super-linear lower bound on the size of log-depth circuits. We also give deterministic polynomial-time algorithms for all $\mathrm{NC}^0_k$-AVOID problems for $m\geq n^{k-1}/\log(n)$. Prior work required an $\mathrm{NP}$ oracle, and required larger stretch, $m \geq n^{k-1}$.

For any two point sets $A,B \subset \mathbb{R}^d$ of size up to $n$, the Chamfer distance from $A$ to $B$ is defined as $\text{CH}(A,B)=\sum_{a \in A} \min_{b \in B} d_X(a,b)$, where $d_X$ is the underlying distance measure (e.g., the Euclidean or Manhattan distance). The Chamfer distance is a popular measure of dissimilarity between point clouds, used in many machine learning, computer vision, and graphics applications, and admits a straightforward $O(d n^2)$-time brute force algorithm. Further, the Chamfer distance is often used as a proxy for the more computationally demanding Earth-Mover (Optimal Transport) Distance. However, the \emph{quadratic} dependence on $n$ in the running time makes the naive approach intractable for large datasets. We overcome this bottleneck and present the first $(1+\epsilon)$-approximate algorithm for estimating the Chamfer distance with a near-linear running time. Specifically, our algorithm runs in time $O(nd \log (n)/\varepsilon^2)$ and is implementable. Our experiments demonstrate that it is both accurate and fast on large high-dimensional datasets. We believe that our algorithm will open new avenues for analyzing large high-dimensional point clouds. We also give evidence that if the goal is to \emph{report} a $(1+\varepsilon)$-approximate mapping from $A$ to $B$ (as opposed to just its value), then any sub-quadratic time algorithm is unlikely to exist.

Time-series datasets are central in numerous fields of science and engineering, such as biomedicine, Earth observation, and network analysis. Extensive research exists on state-space models (SSMs), which are powerful mathematical tools that allow for probabilistic and interpretable learning on time series. Estimating the model parameters in SSMs is arguably one of the most complicated tasks, and the inclusion of prior knowledge is known to both ease the interpretation but also to complicate the inferential tasks. Very recent works have attempted to incorporate a graphical perspective on some of those model parameters, but they present notable limitations that this work addresses. More generally, existing graphical modeling tools are designed to incorporate either static information, focusing on statistical dependencies among independent random variables (e.g., graphical Lasso approach), or dynamic information, emphasizing causal relationships among time series samples (e.g., graphical Granger approaches). However, there are no joint approaches combining static and dynamic graphical modeling within the context of SSMs. This work proposes a novel approach to fill this gap by introducing a joint graphical modeling framework that bridges the static graphical Lasso model and a causal-based graphical approach for the linear-Gaussian SSM. We present DGLASSO (Dynamic Graphical Lasso), a new inference method within this framework that implements an efficient block alternating majorization-minimization algorithm. The algorithm's convergence is established by departing from modern tools from nonlinear analysis. Experimental validation on synthetic and real weather variability data showcases the effectiveness of the proposed model and inference algorithm.

Heterogeneous graphs are ubiquitous data structures that can inherently capture multi-type and multi-modal interactions between objects. In recent years, research on encoding heterogeneous graph into latent representations have enjoyed a rapid increase. However, its reverse process, namely how to construct heterogeneous graphs from underlying representations and distributions have not been well explored due to several challenges in 1) modeling the local heterogeneous semantic distribution; 2) preserving the graph-structured distributions over the local semantics; and 3) characterizing the global heterogeneous graph distributions. To address these challenges, we propose a novel framework for heterogeneous graph generation (HGEN) that jointly captures the semantic, structural, and global distributions of heterogeneous graphs. Specifically, we propose a heterogeneous walk generator that hierarchically generates meta-paths and their path instances. In addition, a novel heterogeneous graph assembler is developed that can sample and combine the generated meta-path instances (e.g., walks) into heterogeneous graphs in a stratified manner. Theoretical analysis on the preservation of heterogeneous graph patterns by the proposed generation process has been performed. Extensive experiments on multiple real-world and synthetic heterogeneous graph datasets demonstrate the effectiveness of the proposed HGEN in generating realistic heterogeneous graphs.

The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.

The goal of this work is to study waves interacting with partially immersed objects allowed to move freely in the vertical direction, and in a regime in which the propagation of the waves is described by the one dimensional Boussinesq-Abbott system. The problem can be reduced to a transmission problem for this Boussinesq system, in which the transmission conditions between the components of the domain at the left and at the right of the object are determined through the resolution of coupled forced ODEs in time satisfied by the vertical displacement of the object and the average discharge in the portion of the fluid located under the object. We propose a new extended formulation in which these ODEs are complemented by two other forced ODEs satisfied by the trace of the surface elevation at the contact points. The interest of this new extended formulation is that the forcing terms are easy to compute numerically and that the surface elevation at the contact points is furnished for free. Based on this formulation, we propose a second order scheme that involves a generalization of the MacCormack scheme with nonlocal flux and a source term, which is coupled to a second order Heun scheme for the ODEs. In order to validate this scheme, several explicit solutions for this wave-structure interaction problem are derived and can serve as benchmark for future codes. As a byproduct, our method provides a second order scheme for the generation of waves at the entrance of the numerical domain for the Boussinesq-Abbott system.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司