亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The exponential fitting technique uses information on the expected behaviour of the solution of a differential problem to define accurate and efficient numerical methods. In particular, exponentially fitted methods are very effective when applied to problems with oscillatory solutions. In this cases, compared to standard methods, they have proved to be very accurate even using large integration steps. In this paper we consider exponentially fitted Runge-Kutta methods and we give characterizations of those that preserve local conservation laws of linear and quadratic quantities. As benchmark problems we consider wave equations arising as models in several fields such as fluid dynamics and quantum physics, and derive exponentially fitted methods that preserve their conservation laws of mass (or charge) and momentum. The proposed methods are applied to approximate breather wave solutions and are compared to other known methods of the same order.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Principle · 模型評估 · 近似 · MoDELS ·
2022 年 1 月 24 日

The paper provides a novel framework to study the accuracy and stability of numerical integration schemes when employed for the time domain simulation of power systems. A matrix pencil-based approach is adopted to evaluate the error between the dynamic modes of the power system and the modes of the approximated discrete-time system arising from the application of the numerical method. The proposed approach can provide meaningful insights on how different methods compare to each other when applied to a power system, while being general enough to be systematically utilized for, in principle, any numerical method. The framework is illustrated for a handful of well-known explicit and implicit methods, while simulation results are presented based on the WSCC 9-bus system, as well as on a 1, 479-bus dynamic model of the All-Island Irish Transmission System.

We introduce Stochastic Asymptotical Regularization (SAR) methods for the uncertainty quantification of the stable approximate solution of ill-posed linear-operator equations, which are deterministic models for numerous inverse problems in science and engineering. We prove the regularizing properties of SAR with regard to mean-square convergence. We also show that SAR is an optimal-order regularization method for linear ill-posed problems provided that the terminating time of SAR is chosen according to the smoothness of the solution. This result is proven for both a priori and a posteriori stopping rules under general range-type source conditions. Furthermore, some converse results of SAR are verified. Two iterative schemes are developed for the numerical realization of SAR, and the convergence analyses of these two numerical schemes are also provided. A toy example and a real-world problem of biosensor tomography are studied to show the accuracy and the advantages of SAR: compared with the conventional deterministic regularization approaches for deterministic inverse problems, SAR can provide the uncertainty quantification of the quantity of interest, which can in turn be used to reveal and explicate the hidden information about real-world problems, usually obscured by the incomplete mathematical modeling and the ascendence of complex-structured noise.

This paper tackles a multi-agent bandit setting where $M$ agents cooperate together to solve the same instance of a $K$-armed stochastic bandit problem. The agents are \textit{heterogeneous}: each agent has limited access to a local subset of arms and the agents are asynchronous with different gaps between decision-making rounds. The goal for each agent is to find its optimal local arm, and agents can cooperate by sharing their observations with others. While cooperation between agents improves the performance of learning, it comes with an additional complexity of communication between agents. For this heterogeneous multi-agent setting, we propose two learning algorithms, \ucbo and \AAE. We prove that both algorithms achieve order-optimal regret, which is $O\left(\sum_{i:\tilde{\Delta}_i>0} \log T/\tilde{\Delta}_i\right)$, where $\tilde{\Delta}_i$ is the minimum suboptimality gap between the reward mean of arm $i$ and any local optimal arm. In addition, a careful selection of the valuable information for cooperation, \AAE achieves a low communication complexity of $O(\log T)$. Last, numerical experiments verify the efficiency of both algorithms.

Structural matrix-variate observations routinely arise in diverse fields such as multi-layer network analysis and brain image clustering. While data of this type have been extensively investigated with fruitful outcomes being delivered, the fundamental questions like its statistical optimality and computational limit are largely under-explored. In this paper, we propose a low-rank Gaussian mixture model (LrMM) assuming each matrix-valued observation has a planted low-rank structure. Minimax lower bounds for estimating the underlying low-rank matrix are established allowing a whole range of sample sizes and signal strength. Under a minimal condition on signal strength, referred to as the information-theoretical limit or statistical limit, we prove the minimax optimality of a maximum likelihood estimator which, in general, is computationally infeasible. If the signal is stronger than a certain threshold, called the computational limit, we design a computationally fast estimator based on spectral aggregation and demonstrate its minimax optimality. Moreover, when the signal strength is smaller than the computational limit, we provide evidences based on the low-degree likelihood ratio framework to claim that no polynomial-time algorithm can consistently recover the underlying low-rank matrix. Our results reveal multiple phase transitions in the minimax error rates and the statistical-to-computational gap. Numerical experiments confirm our theoretical findings. We further showcase the merit of our spectral aggregation method on the worldwide food trading dataset.

Continuous determinantal point processes (DPPs) are a class of repulsive point processes on $\mathbb{R}^d$ with many statistical applications. Although an explicit expression of their density is known, it is too complicated to be used directly for maximum likelihood estimation. In the stationary case, an approximation using Fourier series has been suggested, but it is limited to rectangular observation windows and no theoretical results support it. In this contribution, we investigate a different way to approximate the likelihood by looking at its asymptotic behaviour when the observation window grows towards $\mathbb{R}^d$. This new approximation is not limited to rectangular windows, is faster to compute than the previous one, does not require any tuning parameter, and some theoretical justifications are provided. It moreover provides an explicit formula for estimating the asymptotic variance of the associated estimator. The performances are assessed in a simulation study on standard parametric models on $\mathbb{R}^d$ and compare favourably to common alternative estimation methods for continuous DPPs.

For a map (function) $F(x):\ftwo^n\rightarrow\ftwo^n$ and a given $y$ in the image of $F$ the problem of \emph{local inversion} of $F$ is to find all inverse images $x$ in $\ftwo^n$ such that $y=F(x)$. In Cryptology, such a problem arises in Cryptanalysis of One way Functions (OWFs). The well known TMTO attack in Cryptanalysis is a probabilistic algorithm for computing one solution of local inversion using $O(\sqrt N)$ order computation in offline as well as online for $N=2^n$. This paper proposes a complete algorithm for solving the local inversion problem which uses linear complexity for a unique solution in a periodic orbit. The algorithm is shown to require an offline computation to solve a hard problem (possibly requiring exponential computation) and an online computation dependent on $y$ that of repeated forward evaluation $F(x)$ on points $x$ in $\ff_{2^n}$ which is polynomial time at each evaluation. However the forward evaluation is repeated at most as many number of times as the Linear Complexity of the sequence $\{y,F(y),\ldots\}$ to get one possible solution when this sequence is periodic. All other solutions are obtained in chains $\{e,F(e),\ldots\}$ for all points $e$ in the Garden of Eden (GOE) of the map $F$. Hence a solution $x$ exists iff either the former sequence is periodic or a solution occurs in a chain starting from a point in GOE. The online computation then turns out to be polynomial time $O(L^k)$ in the linear complexity $L$ of the sequence to compute one possible solution in a periodic orbit or $O(l)$ the chain length for a fixed $n$. Hence this is a complete algorithm for solving the problem of finding all rational solutions $x$ of the equation $F(x)=y$ for a given $y$ and a map $F$ in $\ff_{2^n}$.

We study the conservation properties of the Hermite-discontinuous Galerkin (Hermite-DG) approximation of the Vlasov-Maxwell equations. In this semi-discrete formulation, the total mass is preserved independently for every plasma species. Further, an energy invariant exists if central numerical fluxes are used in the DG approximation of Maxwell's equations, while a dissipative term is present when upwind fluxes are employed. In general, traditional temporal integrators might fail to preserve invariants associated with conservation laws (at the continuous or semi-discrete level) during the time evolution. Hence, we analyze the capability of explicit and implicit Runge-Kutta (RK) temporal integrators to preserve such invariants. Since explicit RK methods can only ensure preservation of linear invariants but do not provide any control on the system energy, we consider modified explicit RK methods in the family of relaxation Runge-Kutta methods (RRK). These methods can be tuned to preserve the energy invariant at the continuous or semi-discrete level, a distinction that is important when upwind fluxes are used in the discretization of Maxwell's equations since upwind provides a numerical source of energy dissipation that is not present when central fluxes are used. We prove that the proposed methods are able to preserve the energy invariant and to maintain the semi-discrete energy dissipation (if present) according to the discretization of Maxwell's equations. An extensive set of numerical experiments corroborates the theoretical findings. It also suggests that maintaining the semi-discrete energy dissipation when upwind fluxes are used leads to an overall better accuracy of the method relative to using upwind fluxes while forcing exact energy conservation.

Given a random sample of size $n$ from a $p$ dimensional random vector, where both $n$ and $p$ are large, we are interested in testing whether the $p$ components of the random vector are mutually independent. This is the so-called complete independence test. In the multivariate normal case, it is equivalent to testing whether the correlation matrix is an identity matrix. In this paper, we propose a one-sided empirical likelihood method for the complete independence test for multivariate normal data based on squared sample correlation coefficients. The limiting distribution for our one-sided empirical likelihood test statistic is proved to be $Z^2I(Z>0)$ when both $n$ and $p$ tend to infinity, where $Z$ is a standard normal random variable. In order to improve the power of the empirical likelihood test statistic, we also introduce a rescaled empirical likelihood test statistic. We carry out an extensive simulation study to compare the performance of the rescaled empirical likelihood method and two other statistics which are related to the sum of squared sample correlation coefficients.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.

北京阿比特科技有限公司