Data heterogeneity is an inherent challenge that hinders the performance of federated learning (FL). Recent studies have identified the biased classifiers of local models as the key bottleneck. Previous attempts have used classifier calibration after FL training, but this approach falls short in improving the poor feature representations caused by training-time classifier biases. Resolving the classifier bias dilemma in FL requires a full understanding of the mechanisms behind the classifier. Recent advances in neural collapse have shown that the classifiers and feature prototypes under perfect training scenarios collapse into an optimal structure called simplex equiangular tight frame (ETF). Building on this neural collapse insight, we propose a solution to the FL's classifier bias problem by utilizing a synthetic and fixed ETF classifier during training. The optimal classifier structure enables all clients to learn unified and optimal feature representations even under extremely heterogeneous data. We devise several effective modules to better adapt the ETF structure in FL, achieving both high generalization and personalization. Extensive experiments demonstrate that our method achieves state-of-the-art performances on CIFAR-10, CIFAR-100, and Tiny-ImageNet.
Structure learning is essential for Bayesian networks (BNs) as it uncovers causal relationships, and enables knowledge discovery, predictions, inferences, and decision-making under uncertainty. Two novel algorithms, FSBN and SSBN, based on the PC algorithm, employ local search strategy and conditional independence tests to learn the causal network structure from data. They incorporate d-separation to infer additional topology information, prioritize conditioning sets, and terminate the search immediately and efficiently. FSBN achieves up to 52% computation cost reduction, while SSBN surpasses it with a remarkable 72% reduction for a 200-node network. SSBN demonstrates further efficiency gains due to its intelligent strategy. Experimental studies show that both algorithms match the induction quality of the PC algorithm while significantly reducing computation costs. This enables them to offer interpretability and adaptability while reducing the computational burden, making them valuable for various applications in big data analytics.
Reasoning system dynamics is one of the most important analytical approaches for many scientific studies. With the initial state of a system as input, the recent graph neural networks (GNNs)-based methods are capable of predicting the future state distant in time with high accuracy. Although these methods have diverse designs in modeling the coordinates and interacting forces of the system, we show that they actually share a common paradigm that learns the integration of the velocity over the interval between the initial and terminal coordinates. However, their integrand is constant w.r.t. time. Inspired by this observation, we propose a new approach to predict the integration based on several velocity estimations with Newton-Cotes formulas and prove its effectiveness theoretically. Extensive experiments on several benchmarks empirically demonstrate consistent and significant improvement compared with the state-of-the-art methods.
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
Blockchain promises to enhance distributed machine learning (ML) approaches such as federated learning (FL) by providing further decentralization, security, immutability, and trust, which are key properties for enabling collaborative intelligence in next-generation applications. Nonetheless, the intrinsic decentralized operation of peer-to-peer (P2P) blockchain nodes leads to an uncharted setting for FL, whereby the concepts of FL round and global model become meaningless, as devices' synchronization is lost without the figure of a central orchestrating server. In this paper, we study the practical implications of outsourcing the orchestration of FL to a democratic network such as in a blockchain. In particular, we focus on the effects that model staleness and inconsistencies, endorsed by blockchains' modus operandi, have on the training procedure held by FL devices asynchronously. Using simulation, we evaluate the blockchained FL operation on the well-known CIFAR-10 dataset and focus on the accuracy and timeliness of the solutions. Our results show the high impact of model inconsistencies on the accuracy of the models (up to a ~35% decrease in prediction accuracy), which underscores the importance of properly designing blockchain systems based on the characteristics of the underlying FL application.
Machine learning (ML) is increasingly being deployed in critical systems. The data dependence of ML makes securing data used to train and test ML-enabled systems of utmost importance. While the field of cybersecurity has well-established practices for securing information, ML-enabled systems create new attack vectors. Furthermore, data science and cybersecurity domains adhere to their own set of skills and terminologies. This survey aims to present background information for experts in both domains in topics such as cryptography, access control, zero trust architectures, homomorphic encryption, differential privacy for machine learning, and federated learning to establish shared foundations and promote advancements in data security.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.