Double robustness (DR) is a widely-used property of estimators that provides protection against model misspecification and slow convergence of nuisance functions. While DR is a global property on the probability distribution manifold, it often coincides with influence curves, which only ensure orthogonality to nuisance directions locally. This apparent discrepancy raises fundamental questions about the theoretical underpinnings of DR. In this short communication, we address two key questions: (1) Why do influence curves frequently imply DR "for free"? (2) Under what conditions do DR estimators exist for a given statistical model and parameterization? Using tools from semiparametric theory, we show that convexity is the crucial property that enables influence curves to imply DR. We then derive necessary and sufficient conditions for the existence of DR estimators under a mean squared differentiable path-connected parameterization. Our main contribution also lies in the novel geometric interpretation of DR using information geometry. By leveraging concepts such as parallel transport, m-flatness, and m-curvature freeness, we characterize DR in terms of invariance along submanifolds. This geometric perspective deepens the understanding of when and why DR estimators exist. The results not only resolve apparent mysteries surrounding DR but also have practical implications for the construction and analysis of DR estimators. The geometric insights open up new connections and directions for future research. Our findings aim to solidify the theoretical foundations of a fundamental concept and contribute to the broader understanding of robust estimation in statistics.
Prostate Cancer (PCa) is a prevalent disease among men, and multi-parametric MRIs offer a non-invasive method for its detection. While MRI-based deep learning solutions have shown promise in supporting PCa diagnosis, acquiring sufficient training data, particularly in local clinics remains challenging. One potential solution is to take advantage of publicly available datasets to pre-train deep models and fine-tune them on the local data, but multi-source MRIs can pose challenges due to cross-domain distribution differences. These limitations hinder the adoption of explainable and reliable deep-learning solutions in local clinics for PCa diagnosis. In this work, we present a novel approach for unpaired image-to-image translation of prostate multi-parametric MRIs and an uncertainty-aware training approach for classifying clinically significant PCa, to be applied in data-constrained settings such as local and small clinics. Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data. Additionally, we introduce an evidential deep learning approach to estimate model uncertainty and employ dataset filtering techniques during training. Furthermore, we propose a simple, yet efficient Evidential Focal Loss, combining focal loss with evidential uncertainty, to train our model effectively. Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work. Our code is available at //github.com/med-i-lab/DT_UE_PCa
Despite the notable success of language models (LMs) in various natural language processing (NLP) tasks, the reliability of LMs is susceptible to backdoor attacks. Prior research attempts to mitigate backdoor learning while training the LMs on the poisoned dataset, yet struggles against complex backdoor attacks in real-world scenarios. In this paper, we investigate the learning mechanisms of backdoor LMs in the frequency space by Fourier analysis. Our findings indicate that the backdoor mapping presented on the poisoned datasets exhibits a more discernible inclination towards lower frequency compared to clean mapping, resulting in the faster convergence of backdoor mapping. To alleviate this dilemma, we propose Multi-Scale Low-Rank Adaptation (MuScleLoRA), which deploys multiple radial scalings in the frequency space with low-rank adaptation to the target model and further aligns the gradients when updating parameters. Through downscaling in the frequency space, MuScleLoRA encourages the model to prioritize the learning of relatively high-frequency clean mapping, consequently mitigating backdoor learning. Experimental results demonstrate that MuScleLoRA outperforms baselines significantly. Notably, MuScleLoRA reduces the average success rate of diverse backdoor attacks to below 15\% across multiple datasets and generalizes to various backbone LMs, including BERT, RoBERTa, GPT2-XL, and Llama2. The codes are publicly available at //github.com/ZrW00/MuScleLoRA.
One emergent ability of large language models (LLMs) is that query-specific examples can be included in the prompt at inference time. In this work, we use active learning for adaptive prompt design and call it Active In-context Prompt Design (AIPD). We design the LLM prompt by adaptively choosing few-shot examples from a training set to optimize performance on a test set. The training examples are initially unlabeled and we obtain the label of the most informative ones, which maximally reduces uncertainty in the LLM prediction. We propose two algorithms, GO and SAL, which differ in how the few-shot examples are chosen. We analyze these algorithms in linear models: first GO and then use its equivalence with SAL. We experiment with many different tasks in small, medium-sized, and large language models; and show that GO and SAL outperform other methods for choosing few-shot examples in the LLM prompt at inference time.
Communication efficiency has garnered significant attention as it is considered the main bottleneck for large-scale decentralized Machine Learning applications in distributed and federated settings. In this regime, clients are restricted to transmitting small amounts of quantized information to their neighbors over a communication graph. Numerous endeavors have been made to address this challenging problem by developing algorithms with compressed communication for decentralized non-convex optimization problems. Despite considerable efforts, the current results suffer from various issues such as non-scalability with the number of clients, requirements for large batches, or bounded gradient assumption. In this paper, we introduce MoTEF, a novel approach that integrates communication compression with Momentum Tracking and Error Feedback. Our analysis demonstrates that MoTEF achieves most of the desired properties, and significantly outperforms existing methods under arbitrary data heterogeneity. We provide numerical experiments to validate our theoretical findings and confirm the practical superiority of MoTEF.
Knowledge distillation optimises a smaller student model to behave similarly to a larger teacher model, retaining some of the performance benefits. While this method can improve results on in-distribution examples, it does not necessarily generalise to out-of-distribution (OOD) settings. We investigate two complementary methods for improving the robustness of the resulting student models on OOD domains. The first approach augments the distillation with generated unlabelled examples that match the target distribution. The second method upsamples data points among the training set that are similar to the target distribution. When applied on the task of natural language inference (NLI), our experiments on MNLI show that distillation with these modifications outperforms previous robustness solutions. We also find that these methods improve performance on OOD domains even beyond the target domain.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.