We analyze statistical discrimination in hiring markets using a multi-armed bandit model. Myopic firms face workers arriving with heterogeneous observable characteristics. The association between the worker's skill and characteristics is unknown ex ante; thus, firms need to learn it. Laissez-faire causes perpetual underestimation: minority workers are rarely hired, and therefore, the underestimation tends to persist. Even a marginal imbalance in the population ratio frequently results in perpetual underestimation. We propose two policy solutions: a novel subsidy rule (the hybrid mechanism) and the Rooney Rule. Our results indicate that temporary affirmative actions effectively alleviate discrimination stemming from insufficient data.
Gait Recognition is a computer vision task aiming to identify people by their walking patterns. Although existing methods often show high performance on specific datasets, they lack the ability to generalize to unseen scenarios. Unsupervised Domain Adaptation (UDA) tries to adapt a model, pre-trained in a supervised manner on a source domain, to an unlabelled target domain. There are only a few works on UDA for gait recognition proposing solutions to limited scenarios. In this paper, we reveal a fundamental phenomenon in adaptation of gait recognition models, caused by the bias in the target domain to viewing angle or walking direction. We then suggest a remedy to reduce this bias with a novel triplet selection strategy combined with curriculum learning. To this end, we present Gait Orientation-based method for Unsupervised Domain Adaptation (GOUDA). We provide extensive experiments on four widely-used gait datasets, CASIA-B, OU-MVLP, GREW, and Gait3D, and on three backbones, GaitSet, GaitPart, and GaitGL, justifying the view bias and showing the superiority of our proposed method over prior UDA works.
This paper investigates the potential privacy risks associated with forecasting models, with specific emphasis on their application in the context of smart grids. While machine learning and deep learning algorithms offer valuable utility, concerns arise regarding their exposure of sensitive information. Previous studies have focused on classification models, overlooking risks associated with forecasting models. Deep learning based forecasting models, such as Long Short Term Memory (LSTM), play a crucial role in several applications including optimizing smart grid systems but also introduce privacy risks. Our study analyzes the ability of forecasting models to leak global properties and privacy threats in smart grid systems. We demonstrate that a black box access to an LSTM model can reveal a significant amount of information equivalent to having access to the data itself (with the difference being as low as 1% in Area Under the ROC Curve). This highlights the importance of protecting forecasting models at the same level as the data.
The growing impact of preprint servers enables the rapid sharing of time-sensitive research. Likewise, it is becoming increasingly difficult to distinguish high-quality, peer-reviewed research from preprints. Although preprints are often later published in peer-reviewed journals, this information is often missing from preprint servers. To overcome this problem, the PreprintResolver was developed, which uses four literature databases (DBLP, SemanticScholar, OpenAlex, and CrossRef / CrossCite) to identify preprint-publication pairs for the arXiv preprint server. The target audience focuses on, but is not limited to inexperienced researchers and students, especially from the field of computer science. The tool is based on a fuzzy matching of author surnames, titles, and DOIs. Experiments were performed on a sample of 1,000 arXiv-preprints from the research field of computer science and without any publication information. With 77.94 %, computer science is highly affected by missing publication information in arXiv. The results show that the PreprintResolver was able to resolve 603 out of 1,000 (60.3 %) arXiv-preprints from the research field of computer science and without any publication information. All four literature databases contributed to the final result. In a manual validation, a random sample of 100 resolved preprints was checked. For all preprints, at least one result is plausible. For nine preprints, more than one result was identified, three of which are partially invalid. In conclusion the PreprintResolver is suitable for individual, manually reviewed requests, but less suitable for bulk requests. The PreprintResolver tool (//preprintresolver.eu, Available from 2023-08-01) and source code (//gitlab.com/ippolis_wp3/preprint-resolver, Accessed: 2023-07-19) is available online.
Malicious use of deepfakes leads to serious public concerns and reduces people's trust in digital media. Although effective deepfake detectors have been proposed, they are substantially vulnerable to adversarial attacks. To evaluate the detector's robustness, recent studies have explored various attacks. However, all existing attacks are limited to 2D image perturbations, which are hard to translate into real-world facial changes. In this paper, we propose adversarial head turn (AdvHeat), the first attempt at 3D adversarial face views against deepfake detectors, based on face view synthesis from a single-view fake image. Extensive experiments validate the vulnerability of various detectors to AdvHeat in realistic, black-box scenarios. For example, AdvHeat based on a simple random search yields a high attack success rate of 96.8% with 360 searching steps. When additional query access is allowed, we can further reduce the step budget to 50. Additional analyses demonstrate that AdvHeat is better than conventional attacks on both the cross-detector transferability and robustness to defenses. The adversarial images generated by AdvHeat are also shown to have natural looks. Our code, including that for generating a multi-view dataset consisting of 360 synthetic views for each of 1000 IDs from FaceForensics++, is available at //github.com/twowwj/AdvHeaT.
The development of machine learning models requires a large amount of training data. Data marketplaces are essential for trading high-quality, private-domain data not publicly available online. However, due to growing data privacy concerns, direct data exchange is inappropriate. Federated Learning (FL) is a distributed machine learning paradigm that exchanges data utilities (in form of local models or gradients) among multiple parties without directly sharing the raw data. However, several challenges exist when applying existing FL architectures to construct a data marketplace: (i) In existing FL architectures, Data Acquirers (DAs) cannot privately evaluate local models from Data Providers (DPs) prior to trading; (ii) Model aggregation protocols in existing FL designs struggle to exclude malicious DPs without "overfitting" to the DA's (possibly biased) root dataset; (iii) Prior FL designs lack a proper billing mechanism to enforce the DA to fairly allocate the reward according to contributions made by different DPs. To address above challenges, we propose martFL, the first federated learning architecture that is specifically designed to enable a secure utility-driven data marketplace. At a high level, martFL is powered by two innovative designs: (i) a quality-aware model aggregation protocol that achieves robust local model aggregation even when the DA's root dataset is biased; (ii) a verifiable data transaction protocol that enables the DA to prove, both succinctly and in zero-knowledge, that it has faithfully aggregates the local models submitted by different DPs according to the committed aggregation weights, based on which the DPs can unambiguously claim the corresponding reward. We implement a prototype of martFL and evaluate it extensively over various tasks. The results show that martFL can improve the model accuracy by up to 25% while saving up to 64% data acquisition cost.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.