Information decompositions quantify how the Shannon information about a given random variable is distributed among several other random variables. Various requirements have been proposed that such a decomposition should satisfy, leading to different candidate solutions. Curiously, however, only two of the original requirements that determined the Shannon information have been considered, namely monotonicity and normalization. Two other important properties, continuity and additivity, have not been considered. In this contribution, we focus on the mutual information of two finite variables $Y,Z$ about a third finite variable $S$ and check which of the decompositions satisfy these two properties. While most of them satisfy continuity, only one of them is both continuous and additive.
The dynamics of affective decision making is considered for an intelligent network composed of agents with different types of memory: long-term and short-term memory. The consideration is based on probabilistic affective decision theory, which takes into account the rational utility of alternatives as well as the emotional alternative attractiveness. The objective of this paper is the comparison of two multistep operational algorithms of the intelligent network: one based on discrete dynamics and the other on continuous dynamics. By means of numerical analysis, it is shown that, depending on the network parameters, the characteristic probabilities for continuous and discrete operations can exhibit either close or drastically different behavior. Thus, depending on which algorithm is employed, either discrete or continuous, theoretical predictions can be rather different, which does not allow for a uniquely defined description of practical problems. This finding is important for understanding which of the algorithms is more appropriate for the correct analysis of decision-making tasks. A discussion is given, revealing that the discrete operation seems to be more realistic for describing intelligent networks as well as affective artificial intelligence.
Home automation for many years had faced challenges that limit its spreading around the world. These challenges caused by the high cost of Own such a home, inflexibility system (cannot be monitored outside the home) and issues to achieve optimal security. Our main objective is to design and implement a smart home model that is simple, affordable to the users. The proposed system provide flexibility to monitor the home, using the reliable cellular network. The user will be able what is inside the home when he /she is away from home. In addition to that, our model overcome the issue of the security by providing different sensors that detects smoke, gas, leakage of water and incases of burglary. Moreover, a camera will be available in the home to give a full view for the user when he/she is outside the home. The user will be informed by an application on his/she phone incase if there is a fire, water leakage and if someone break into the house. This will give the user a chance to take an action if such cases happened. Furthermore, the user can monitor the lighting system of the home, by giving the user a chance to turn the lights on and off remotely.
A common approach to quantum circuit transformation is to use the properties of a specific gate set to create an efficient representation of a given circuit's unitary, such as a parity matrix or stabiliser tableau, and then resynthesise an improved circuit, e.g. with fewer gates or respecting connectivity constraints. Since these methods rely on a restricted gate set, generalisation to arbitrary circuits usually involves slicing the circuit into pieces that can be resynthesised and working with these separately. The choices made about what gates should go into each slice can have a major effect on the performance of the resynthesis. In this paper we propose an alternative approach to generalising these resynthesis algorithms to general quantum circuits. Instead of cutting the circuit into slices, we "cut out" the gates we can't resynthesise leaving holes in our quantum circuit. The result is a second-order process called a quantum comb, which can be resynthesised directly. We apply this idea to the RowCol algorithm, which resynthesises CNOT circuits for topologically constrained hardware, explaining how we were able to extend it to work for quantum combs. We then compare the generalisation of RowCol using our method to the naive "slice and build" method empirically on a variety of circuit sizes and hardware topologies. Finally, we outline how quantum combs could be used to help generalise other resynthesis algorithms.
We consider a statistical problem to estimate variables (effects) that are associated with the edges of a complete bipartite graph $K_{v_1, v_2}=(V_1, V_2 \, ; E)$. Each data is obtained as a sum of selected effects, a subset of $E$. In order to estimate efficiently, we propose a design called Spanning Bipartite Block Design (SBBD). For SBBDs such that the effects are estimable, we proved that the estimators have the same variance (variance balanced). If each block (a subgraph of $K_{v_1, v_2}$) of SBBD is a semi-regular or a regular bipartite graph, we show that the design is A-optimum. We also show a construction of SBBD using an ($r,\lambda$)-design and an ordered design. A BIBD with prime power blocks gives an A-optimum semi-regular or regular SBBD. At last, we mention that this SBBD is able to use for deep learning.
Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.
As data sharing has become more prevalent, three pillars - archives, standards, and analysis tools - have emerged as critical components in facilitating effective data sharing and collaboration. This paper compares four freely available intracranial neuroelectrophysiology data repositories: Data Archive for the BRAIN Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), OpenNeuro, and Brain-CODE. The aim of this review is to describe archives that provide researchers with tools to store, share, and reanalyze both human and non-human neurophysiology data based on criteria that are of interest to the neuroscientific community. The Brain Imaging Data Structure (BIDS) and Neurodata Without Borders (NWB) are utilized by these archives to make data more accessible to researchers by implementing a common standard. As the necessity for integrating large-scale analysis into data repository platforms continues to grow within the neuroscientific community, this article will highlight the various analytical and customizable tools developed within the chosen archives that may advance the field of neuroinformatics.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.