In public opinion studies, the relationships between opinions on different topics are likely to shift based on the characteristics of the respondents. Thus, understanding the complexities of public opinion requires methods that can account for the heterogeneity in responses across different groups. Multiple graphs are used to study how external factors-such as time spent online or generational differences-shape the joint dependence relationships between opinions on various topics. Specifically, we propose a class of multiple Ising models where a set of graphs across different groups are able to capture these variations and to model the heterogeneity induced in a set of binary variables by external factors. The proposed Bayesian methodology is based on a Markov Random Field prior for the multiple graph setting. Such prior enables the borrowing of strength across the different groups to encourage common edges when supported by the data. Sparse inducing spike-and-slab priors are employed on the parameters that measure graph similarities to learn which subgroups have a shared graph structure. Two Bayesian approaches are developed for the inference of multiple Ising models with a special focus on model selection: (i) a Fully Bayesian method for low-dimensional graphs based on conjugate priors specified with respect to the exact likelihood, and (ii) an Approximate Bayesian method based on a quasi-likelihood approach for high-dimensional graphs where the normalization constant required in the exact method is computationally intractable. These methods are employed for the analysis of data from two public opinion studies in US. The obtained results display a good trade-off between identifying significant edges (both shared and group-specific) and having sparse networks, all while quantifying the uncertainty of the graph structure and the graphs' similarity.
Semi-supervised learning has received considerable attention for its potential to leverage abundant unlabeled data to enhance model robustness. Pseudo labeling is a widely used strategy in semi supervised learning. However, existing methods often suffer from noise contamination, which can undermine model performance. To tackle this challenge, we introduce a novel Synergy-Guided Regional Supervision of Pseudo Labels (SGRS-Net) framework. Built upon the mean teacher network, we employ a Mix Augmentation module to enhance the unlabeled data. By evaluating the synergy before and after augmentation, we strategically partition the pseudo labels into distinct regions. Additionally, we introduce a Region Loss Evaluation module to assess the loss across each delineated area. Extensive experiments conducted on the LA dataset have demonstrated superior performance over state-of-the-art techniques, underscoring the efficiency and practicality of our framework.
A substantial portion of distributed computing research is dedicated to terminating problems like consensus and similar agreement problems. However, non-terminating problems have been intensively studied in the context of self-stabilizing distributed algorithms, where processes may start from arbitrary initial states and can tolerate arbitrary transient faults. In between lie stabilizing problems, where the processes start from a well-defined initial state, but do not need to decide irrevocably and are allowed to change their decision finitely often until a stable decision is eventually reached. In this paper, we introduce the novel Delayed Lossy-Link (DLL) model, and the Lossy Iterated Immediate Snapshot Model (LIIS), for which we show stabilizing consensus to be impossible. The DLL model is introduced as a variant of the well-known Lossy-Link model, which admits silence periods of arbitrary but finite length. The LIIS model is a variant of the Iterated Immediate Snapshot (IIS), model which admits finite length periods of at most $f$ omission faults per layer. In particular, we show that stabilizing consensus is impossible even when $f=1$. Our results show that even in a model with very strong connectivity, namely, the Iterated Immediate Snapshot (IIS) model, a single omission fault per layer effectively disables stabilizing consensus. Furthermore, since the DLL model always has a perpetual broadcaster, the mere existence of a perpetual broadcaster, even in a crash-free setting, is not sufficient for solving stabilizing consensus, negatively answering the open question posed by Charron-Bost and Moran.
Nonsmooth composite optimization with orthogonality constraints is crucial in statistical learning and data science, but it presents challenges due to its nonsmooth objective and computationally expensive, non-convex constraints. In this paper, we propose a new approach called \textbf{OBCD}, which leverages Block Coordinate Descent (BCD) to address these challenges. \textbf{OBCD} is a feasible method with a small computational footprint. In each iteration, it updates $k$ rows of the solution matrix, where $k \geq 2$, while globally solving a small nonsmooth optimization problem under orthogonality constraints. We prove that \textbf{OBCD} converges to block-$k$ stationary points, which offer stronger optimality than standard critical points. Notably, \textbf{OBCD} is the first greedy descent method with monotonicity for this problem class. Under the Kurdyka-Lojasiewicz (KL) inequality, we establish strong limit-point convergence. We also extend \textbf{OBCD} with breakpoint searching methods for subproblem solving and greedy strategies for working set selection. Comprehensive experiments demonstrate the superior performance of our approach across various tasks.
It has been shown that one can design distributed algorithms that are (nearly) singularly optimal, meaning they simultaneously achieve optimal time and message complexity (within polylogarithmic factors), for several fundamental global problems such as broadcast, leader election, and spanning tree construction, under the $\text{KT}_0$ assumption. With this assumption, nodes have initial knowledge only of themselves, not their neighbors. In this case the time and message lower bounds are $\Omega(D)$ and $\Omega(m)$, respectively, where $D$ is the diameter of the network and $m$ is the number of edges, and there exist (even) deterministic algorithms that simultaneously match these bounds. On the other hand, under the $\text{KT}_1$ assumption, whereby each node has initial knowledge of itself and the identifiers of its neighbors, the situation is not clear. For the $\text{KT}_1$ CONGEST model (where messages are of small size), King, Kutten, and Thorup (KKT) showed that one can solve several fundamental global problems (with the notable exception of BFS tree construction) such as broadcast, leader election, and spanning tree construction with $\tilde{O}(n)$ message complexity ($n$ is the network size), which can be significantly smaller than $m$. Randomization is crucial in obtaining this result. While the message complexity of the KKT result is near-optimal, its time complexity is $\tilde{O}(n)$ rounds, which is far from the standard lower bound of $\Omega(D)$. In this paper, we show that in the $\text{KT}_1$ LOCAL model (where message sizes are not restricted), singular optimality is achievable. Our main result is that all global problems, including BFS tree construction, can be solved in $\tilde{O}(D)$ rounds and $\tilde{O}(n)$ messages, where both bounds are optimal up to polylogarithmic factors. Moreover, we show that this can be achieved deterministically.
In recent years, Solving partial differential equations has shifted the focus of traditional neural network studies from finite-dimensional Euclidean spaces to generalized functional spaces in research. A novel methodology is to learn an operator as a means of approximating the mapping between outputs. Currently, researchers have proposed a variety of operator architectures. Nevertheless, the majority of these architectures adopt an iterative update architecture, whereby a single operator is learned from the same function space. In practical physical science problems, the numerical solutions of partial differential equations are complex, and a serial single operator is unable to accurately approximate the intricate mapping between input and output. So, We propose a deep parallel operator model (DPNO) for efficiently and accurately solving partial differential equations. DPNO employs convolutional neural networks to extract local features and map data into distinct latent spaces. Designing a parallel block of double Fourier neural operators to solve the iterative error problem. DPNO approximates complex mappings between inputs and outputs by learning multiple operators in different potential spaces in parallel blocks. DPNO achieved the best performance on five of them, with an average improvement of 10.5\%, and ranked second on one dataset.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.