The classical theory of Kosambi-Cartan-Chern (KCC) developed in differential geometry provides a powerful method for analyzing the behaviors of dynamical systems. In the KCC theory, the properties of a dynamical system are described in terms of five geometrical invariants, of which the second corresponds to the so-called Jacobi stability of the system. Different from that of the Lyapunov stability that has been studied extensively in the literature, the analysis of the Jacobi stability has been investigated more recently using geometrical concepts and tools. It turns out that the existing work on the Jacobi stability analysis remains theoretical and the problem of algorithmic and symbolic treatment of Jacobi stability analysis has yet to be addressed. In this paper, we initiate our study on the problem for a class of ODE systems of arbitrary dimension and propose two algorithmic schemes using symbolic computation to check whether a nonlinear dynamical system may exhibit Jacobi stability. The first scheme, based on the construction of the complex root structure of a characteristic polynomial and on the method of quantifier elimination, is capable of detecting the existence of the Jacobi stability of the given dynamical system. The second algorithmic scheme exploits the method of semi-algebraic system solving and allows one to determine conditions on the parameters for a given dynamical system to have a prescribed number of Jacobi stable fixed points. Several examples are presented to demonstrate the effectiveness of the proposed algorithmic schemes.
In geostatistical problems with massive sample size, Gaussian processes can be approximated using sparse directed acyclic graphs to achieve scalable $O(n)$ computational complexity. In these models, data at each location are typically assumed conditionally dependent on a small set of parents which usually include a subset of the nearest neighbors. These methodologies often exhibit excellent empirical performance, but the lack of theoretical validation leads to unclear guidance in specifying the underlying graphical model and sensitivity to graph choice. We address these issues by introducing radial neighbors Gaussian processes (RadGP), a class of Gaussian processes based on directed acyclic graphs in which directed edges connect every location to all of its neighbors within a predetermined radius. We prove that any radial neighbors Gaussian process can accurately approximate the corresponding unrestricted Gaussian process in Wasserstein-2 distance, with an error rate determined by the approximation radius, the spatial covariance function, and the spatial dispersion of samples. We offer further empirical validation of our approach via applications on simulated and real world data showing excellent performance in both prior and posterior approximations to the original Gaussian process.
This work concerns the minimization of the pseudospectral abscissa of a matrix-valued function dependent on parameters analytically. The problem is motivated by robust stability and transient behavior considerations for a linear control system that has optimization parameters. We describe a subspace procedure to cope with the setting when the matrix-valued function is of large size. The proposed subspace procedure solves a sequence of reduced problems obtained by restricting the matrix-valued function to small subspaces, whose dimensions increase gradually. It possesses desirable features such as a superlinear convergence exhibited by the decay in the errors of the minimizers of the reduced problems. In mathematical terms, the problem we consider is a large-scale nonconvex minimax eigenvalue optimization problem such that the eigenvalue function appears in the constraint of the inner maximization problem. Devising and analyzing a subspace framework for the minimax eigenvalue optimization problem at hand with the eigenvalue function in the constraint require special treatment that makes use of a Lagrangian and dual variables. There are notable advantages in minimizing the pseudospectral abscissa over maximizing the distance to instability or minimizing the $\mathcal{H}_\infty$ norm; the optimized pseudospectral abscissa provides quantitative information about the worst-case transient growth, and the initial guesses for the parameter values to optimize the pseudospectral abscissa can be arbitrary, unlike the case to optimize the distance to instability and $\mathcal{H}_\infty$ norm that would normally require initial guesses yielding asymptotically stable systems.
A polynomial homotopy is a family of polynomial systems, typically in one parameter $t$. Our problem is to compute power series expansions of the coordinates of the solutions in the parameter $t$, accurately, using multiple double arithmetic. One application of this problem is the location of the nearest singular solution in a polynomial homotopy, via the theorem of Fabry. Power series serve as input to construct Pad\'{e} approximations. Exploiting the massive parallelism of Graphics Processing Units capable of performing several trillions floating-point operations per second, the objective is to compensate for the cost overhead caused by arithmetic with power series in multiple double precision. The application of Newton's method for this problem requires the evaluation and differentiation of polynomials, followed by solving a blocked lower triangular linear system. Experimental results are obtained on NVIDIA GPUs, in particular the RTX 2080, RTX 4080, P100, V100, and A100. Code generated by the CAMPARY software is used to obtain results in double double, quad double, and octo double precision. The programs in this study are self contained, available in a public github repository under the GPL-v3.0 License.
In symmetric cryptography, maximum distance separable (MDS) matrices with computationally simple inverses have wide applications. Many block ciphers like AES, SQUARE, SHARK, and hash functions like PHOTON use an MDS matrix in the diffusion layer. In this article, we first characterize all $3 \times 3$ irreducible semi-involutory matrices over the finite field of characteristic $2$. Using this matrix characterization, we provide a necessary and sufficient condition to construct MDS semi-involutory matrices using only their diagonal entries and the entries of an associated diagonal matrix. Finally, we count the number of $3 \times 3$ semi-involutory MDS matrices over any finite field of characteristic $2$.
Data, algorithms, and arithmetic power are the three foundational conditions for deep learning to be effective in the application domain. Data is the focus for developing deep learning algorithms. In practical engineering applications, some data are affected by the conditions under which more data cannot be obtained or the cost of obtaining data is too high, resulting in smaller data sets (generally several hundred to several thousand) and data sizes that are far smaller than the size of large data sets (tens of thousands). The above two methods are based on the original dataset to generate, in the case of insufficient data volume of the original data may not reflect all the real environment, such as the real environment of the light, silhouette and other information, if the amount of data is not enough, it is difficult to use a simple transformation or neural network generative model to generate the required data. The research in this paper firstly analyses the key points of the data enhancement technology of graph neural network, and at the same time introduces the composition foundation of graph neural network in depth, on the basis of which the data enhancement technology of graph neural network is optimized and analysed.
We study interacting particle systems driven by noise, modeling phenomena such as opinion dynamics. We are interested in systems that exhibit phase transitions i.e. non-uniqueness of stationary states for the corresponding McKean-Vlasov PDE, in the mean field limit. We develop an efficient numerical scheme for identifying all steady states (both stable and unstable) of the mean field McKean-Vlasov PDE, based on a spectral Galerkin approximation combined with a deflated Newton's method to handle the multiplicity of solutions. Having found all possible equilibra, we formulate an optimal control strategy for steering the dynamics towards a chosen unstable steady state. The control is computed using iterated open-loop solvers in a receding horizon fashion. We demonstrate the effectiveness of the proposed steady state computation and stabilization methodology on several examples, including the noisy Hegselmann-Krause model for opinion dynamics and the Haken-Kelso-Bunz model from biophysics. The numerical experiments validate the ability of the approach to capture the rich self-organization landscape of these systems and to stabilize unstable configurations of interest. The proposed computational framework opens up new possibilities for understanding and controlling the collective behavior of noise-driven interacting particle systems, with potential applications in various fields such as social dynamics, biological synchronization, and collective behavior in physical and social systems.
The moments of the coefficients of elliptic curve L-functions are related to numerous arithmetic problems. Rosen and Silverman proved a conjecture of Nagao relating the first moment of one-parameter families satisfying Tate's conjecture to the rank of the corresponding elliptic surface over Q(T); one can also construct families of moderate rank by finding families with large first moments. Michel proved that if j(T) is not constant, then the second moment of the family is of size p^2 + O(p^(3/2)); these two moments show that for suitably small support the behavior of zeros near the central point agree with that of eigenvalues from random matrix ensembles, with the higher moments impacting the rate of convergence. In his thesis, Miller noticed a negative bias in the second moment of every one-parameter family of elliptic curves over the rationals whose second moment had a calculable closed-form expression, specifically the first lower order term which does not average to zero is on average negative. This Bias Conjecture is confirmed for many families; however, these are highly non-generic families whose resulting Legendre sums can be determined. Inspired by the recent successes by Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, Alexey Pozdnyakov and others in investigations of murmurations of elliptic curve coefficients with machine learning techniques, we pose a similar problem for trying to understand the Bias Conjecture. As a start to this program, we numerically investigate the Bias Conjecture for a family whose bias is positive for half the primes. Since the numerics do not offer conclusive evidence that negative bias for the other half is enough to overwhelm the positive bias, the Bias Conjecture cannot be verified for the family.
This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.