Computational cost of training state-of-the-art deep models in many learning problems is rapidly increasing due to more sophisticated models and larger datasets. A recent promising direction for reducing training cost is dataset condensation that aims to replace the original large training set with a significantly smaller learned synthetic set while preserving the original information. While training deep models on the small set of condensed images can be extremely fast, their synthesis remains computationally expensive due to the complex bi-level optimization and second-order derivative computation. In this work, we propose a simple yet effective method that synthesizes condensed images by matching feature distributions of the synthetic and original training images in many sampled embedding spaces. Our method significantly reduces the synthesis cost while achieving comparable or better performance. Thanks to its efficiency, we apply our method to more realistic and larger datasets with sophisticated neural architectures and obtain a significant performance boost. We also show promising practical benefits of our method in continual learning and neural architecture search.
We investigate the robustness of vision transformers (ViTs) through the lens of their special patch-based architectural structure, i.e., they process an image as a sequence of image patches. We find that ViTs are surprisingly insensitive to patch-based transformations, even when the transformation largely destroys the original semantics and makes the image unrecognizable by humans. This indicates that ViTs heavily use features that survived such transformations but are generally not indicative of the semantic class to humans. Further investigations show that these features are useful but non-robust, as ViTs trained on them can achieve high in-distribution accuracy, but break down under distribution shifts. From this understanding, we ask: can training the model to rely less on these features improve ViT robustness and out-of-distribution performance? We use the images transformed with our patch-based operations as negatively augmented views and offer losses to regularize the training away from using non-robust features. This is a complementary view to existing research that mostly focuses on augmenting inputs with semantic-preserving transformations to enforce models' invariance. We show that patch-based negative augmentation consistently improves robustness of ViTs across a wide set of ImageNet based robustness benchmarks. Furthermore, we find our patch-based negative augmentation are complementary to traditional (positive) data augmentation, and together boost the performance further.
Surrogate kernel-based methods offer a flexible solution to structured output prediction by leveraging the kernel trick in both input and output spaces. In contrast to energy-based models, they avoid to pay the cost of inference during training, while enjoying statistical guarantees. However, without approximation, these approaches are condemned to be used only on a limited amount of training data. In this paper, we propose to equip surrogate kernel methods with approximations based on sketching, seen as low rank projections of feature maps both on input and output feature maps. We showcase the approach on Input Output Kernel ridge Regression (or Kernel Dependency Estimation) and provide excess risk bounds that can be in turn directly plugged on the final predictive model. An analysis of the complexity in time and memory show that sketching the input kernel mostly reduces training time while sketching the output kernel allows to reduce the inference time. Furthermore, we show that Gaussian and sub-Gaussian sketches are admissible sketches in the sense that they induce projection operators ensuring a small excess risk. Experiments on different tasks consolidate our findings.
Traditional machine learning techniques require centralizing all training data on one server or data hub. Due to the development of communication technologies and a huge amount of decentralized data on many clients, collaborative machine learning has become the main interest while providing privacy-preserving frameworks. In particular, federated learning (FL) provides such a solution to learn a shared model while keeping training data at local clients. On the other hand, in a wide range of machine learning and signal processing applications, the desired solution naturally has a certain structure that can be framed as sparsity with respect to a certain dictionary. This problem can be formulated as an optimization problem with sparsity constraints and solving it efficiently has been one of the primary research topics in the traditional centralized setting. In this paper, we propose a novel algorithmic framework, federated gradient matching pursuit (FedGradMP), to solve the sparsity constrained minimization problem in the FL setting. We also generalize our algorithms to accommodate various practical FL scenarios when only a subset of clients participate per round, when the local model estimation at clients could be inexact, or when the model parameters are sparse with respect to general dictionaries. Our theoretical analysis shows the linear convergence of the proposed algorithms. A variety of numerical experiments are conducted to demonstrate the great potential of the proposed framework -- fast convergence both in communication rounds and computation time for many important scenarios without sophisticated parameter tuning.
Evaluation in Information Retrieval relies on post-hoc empirical procedures, which are time-consuming and expensive operations. To alleviate this, Query Performance Prediction (QPP) models have been developed to estimate the performance of a system without the need for human-made relevance judgements. Such models, usually relying on lexical features from queries and corpora, have been applied to traditional sparse IR methods - with various degrees of success. With the advent of neural IR and large Pre-trained Language Models, the retrieval paradigm has significantly shifted towards more semantic signals. In this work, we study and analyze to what extent current QPP models can predict the performance of such systems. Our experiments consider seven traditional bag-of-words and seven BERT-based IR approaches, as well as nineteen state-of-the-art QPPs evaluated on two collections, Deep Learning '19 and Robust '04. Our findings show that QPPs perform statistically significantly worse on neural IR systems. In settings where semantic signals are prominent (e.g., passage retrieval), their performance on neural models drops by as much as 10% compared to bag-of-words approaches. On top of that, in lexical-oriented scenarios, QPPs fail to predict performance for neural IR systems on those queries where they differ from traditional approaches the most.
Meta-learning aims to extract useful inductive biases from a set of related datasets. In Bayesian meta-learning, this is typically achieved by constructing a prior distribution over neural network parameters. However, specifying families of computationally viable prior distributions over the high-dimensional neural network parameters is difficult. As a result, existing approaches resort to meta-learning restrictive diagonal Gaussian priors, severely limiting their expressiveness and performance. To circumvent these issues, we approach meta-learning through the lens of functional Bayesian neural network inference, which views the prior as a stochastic process and performs inference in the function space. Specifically, we view the meta-training tasks as samples from the data-generating process and formalize meta-learning as empirically estimating the law of this stochastic process. Our approach can seamlessly acquire and represent complex prior knowledge by meta-learning the score function of the data-generating process marginals instead of parameter space priors. In a comprehensive benchmark, we demonstrate that our method achieves state-of-the-art performance in terms of predictive accuracy and substantial improvements in the quality of uncertainty estimates.
In this paper we revisit some common recommendations regarding the analysis of matched-pair and stratified experimental designs in the presence of attrition. Our main objective is to clarify a number of well-known claims about the practice of dropping pairs with an attrited unit when analyzing matched-pair designs. Contradictory advice appears in the literature about whether or not dropping pairs is beneficial or harmful, and stratifying into larger groups has been recommended as a resolution to the issue. To address these claims, we derive the estimands obtained from the difference-in-means estimator in a matched-pair design both when the observations from pairs with an attrited unit are retained and when they are dropped. We find limited evidence to support the claims that dropping pairs helps recover the average treatment effect, but we find that it may potentially help in recovering a convex weighted average of conditional average treatment effects. We report similar findings for stratified designs when studying the estimands obtained from a regression of outcomes on treatment with and without strata fixed effects.
Data valuation is an essential task in a data marketplace. It aims at fairly compensating data owners for their contribution. There is increasing recognition in the machine learning community that the Shapley value -- a foundational profit-sharing scheme in cooperative game theory -- has major potential to value data, because it uniquely satisfies basic properties for fair credit allocation and has been shown to be able to identify data sources that are useful or harmful to model performance. However, calculating the Shapley value requires accessing original data sources. It still remains an open question how to design a real-world data marketplace that takes advantage of the Shapley value-based data pricing while protecting privacy and allowing fair payments. In this paper, we propose the {\em first} prototype of a data marketplace that values data sources based on the Shapley value in a privacy-preserving manner and at the same time ensures fair payments. Our approach is enabled by a suite of innovations on both algorithm and system design. We firstly propose a Shapley value calculation algorithm that can be efficiently implemented via multiparty computation (MPC) circuits. The key idea is to learn a performance predictor that can directly predict model performance corresponding to an input dataset without performing actual training. We further optimize the MPC circuit design based on the structure of the performance predictor. We further incorporate fair payment into the MPC circuit to guarantee that the data that the buyer pays for is exactly the same as the one that has been valuated. Our experimental results show that the proposed new data valuation algorithm is as effective as the original expensive one. Furthermore, the customized MPC protocol is efficient and scalable.
Disaggregated performance metrics across demographic groups are a hallmark of fairness assessments in computer vision. These metrics successfully incentivized performance improvements on person-centric tasks such as face analysis and are used to understand risks of modern models. However, there is a lack of discussion on the vulnerabilities of these measurements for more complex computer vision tasks. In this paper, we consider multi-label image classification and, specifically, object categorization tasks. First, we highlight design choices and trade-offs for measurement that involve more nuance than discussed in prior computer vision literature. These challenges are related to the necessary scale of data, definition of groups for images, choice of metric, and dataset imbalances. Next, through two case studies using modern vision models, we demonstrate that naive implementations of these assessments are brittle. We identify several design choices that look merely like implementation details but significantly impact the conclusions of assessments, both in terms of magnitude and direction (on which group the classifiers work best) of disparities. Based on ablation studies, we propose some recommendations to increase the reliability of these assessments. Finally, through a qualitative analysis we find that concepts with large disparities tend to have varying definitions and representations between groups, with inconsistencies across datasets and annotators. While this result suggests avenues for mitigation through more consistent data collection, it also highlights that ambiguous label definitions remain a challenge when performing model assessments. Vision models are expanding and becoming more ubiquitous; it is even more important that our disparity assessments accurately reflect the true performance of models.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.