In this work, we construct a fifth-order weighted essentially non-oscillatory (WENO) scheme with exponential approximation space for solving dispersive equations. A conservative third-order derivative formulation is developed directly using WENO spatial reconstruction procedure and third-order TVD Runge- Kutta scheme is used for the evaluation of time derivative. This exponential approximation space consists a tension parameter that may be optimized to fit the specific feature of the charecteristic data, yielding better results without spurious oscillations compared to the polynomial approximation space. A detailed formulation is presented for the the construction of conservative flux approximation, smoothness indicators, nonlinear weights and verified that the proposed scheme provides the required fifth convergence order. One and two-dimensional numerical examples are presented to support the theoretical claims.
Continual learning (CL) methods designed for natural image classification often fail to reach basic quality standards for medical image segmentation. Atlas-based segmentation, a well-established approach in medical imaging, incorporates domain knowledge on the region of interest, leading to semantically coherent predictions. This is especially promising for CL, as it allows us to leverage structural information and strike an optimal balance between model rigidity and plasticity over time. When combined with privacy-preserving prototypes, this process offers the advantages of rehearsal-based CL without compromising patient privacy. We propose Atlas Replay, an atlas-based segmentation approach that uses prototypes to generate high-quality segmentation masks through image registration that maintain consistency even as the training distribution changes. We explore how our proposed method performs compared to state-of-the-art CL methods in terms of knowledge transferability across seven publicly available prostate segmentation datasets. Prostate segmentation plays a vital role in diagnosing prostate cancer, however, it poses challenges due to substantial anatomical variations, benign structural differences in older age groups, and fluctuating acquisition parameters. Our results show that Atlas Replay is both robust and generalizes well to yet-unseen domains while being able to maintain knowledge, unlike end-to-end segmentation methods. Our code base is available under //github.com/MECLabTUDA/Atlas-Replay.
We study pointwise estimation and uncertainty quantification for a sparse variational Gaussian process method with eigenvector inducing variables. For a rescaled Brownian motion prior, we derive theoretical guarantees and limitations for the frequentist size and coverage of pointwise credible sets. For sufficiently many inducing variables, we precisely characterize the asymptotic frequentist coverage, deducing when credible sets from this variational method are conservative and when overconfident/misleading. We numerically illustrate the applicability of our results and discuss connections with other common Gaussian process priors.
In this work, we propose two criteria for linear codes obtained from the Plotkin sum construction being symplectic self-orthogonal (SO) and linear complementary dual (LCD). As specific constructions, several classes of symplectic SO codes with good parameters including symplectic maximum distance separable codes are derived via $\ell$-intersection pairs of linear codes and generalized Reed-Muller codes. Also symplectic LCD codes are constructed from general linear codes. Furthermore, we obtain some binary symplectic LCD codes, which are equivalent to quaternary trace Hermitian additive complementary dual codes that outperform best-known quaternary Hermitian LCD codes reported in the literature. In addition, we prove that symplectic SO and LCD codes obtained in these ways are asymptotically good.
An important yet underexplored question in the PAC-Bayes literature is how much tightness we lose by restricting the posterior family to factorized Gaussian distributions when optimizing a PAC-Bayes bound. We investigate this issue by estimating data-independent PAC-Bayes bounds using the optimal posteriors, comparing them to bounds obtained using MFVI. Concretely, we (1) sample from the optimal Gibbs posterior using Hamiltonian Monte Carlo, (2) estimate its KL divergence from the prior with thermodynamic integration, and (3) propose three methods to obtain high-probability bounds under different assumptions. Our experiments on the MNIST dataset reveal significant tightness gaps, as much as 5-6\% in some cases.
Slope limiters play an essential role in maintaining the non-oscillatory behavior of high-resolution methods for nonlinear conservation laws. The family of minmod limiters serves as the prototype example. Here, we revisit the question of non-oscillatory behavior of high-resolution central schemes in terms of the slope limiter proposed by van Albada et. al. 1982. The van Albada (vA) limiter is smoother near extrema, and consequently, in many cases, it outperforms the results obtained using the standard minmod limiter. In particular, we prove that the vA limiter ensures 1D TVD stability and demonstrate that it yields noticeable improvement in computation of one- and two-dimensional systems.
We investigate the properties of the high-order discontinuous Galerkin spectral element method (DGSEM) with implicit backward-Euler time stepping for the approximation of hyperbolic linear scalar conservation equation in multiple space dimensions. We first prove that the DGSEM scheme in one space dimension preserves a maximum principle for the cell-averaged solution when the time step is large enough. This property however no longer holds in multiple space dimensions and we propose to use the flux-corrected transport limiting [Boris and Book, J. Comput. Phys., 11 (1973)] based on a low-order approximation using graph viscosity to impose a maximum principle on the cell-averaged solution. These results allow to use a linear scaling limiter [Zhang and Shu, J. Comput. Phys., 229 (2010)] in order to impose a maximum principle at nodal values within elements. Then, we investigate the inversion of the linear systems resulting from the time implicit discretization at each time step. We prove that the diagonal blocks are invertible and provide efficient algorithms for their inversion. Numerical experiments in one and two space dimensions are presented to illustrate the conclusions of the present analyses.
In this paper, we present an efficient solution for weed classification in agriculture. We focus on optimizing model performance at inference while respecting the constraints of the agricultural domain. We propose a Quantized Deep Neural Network model that classifies a dataset of 9 weed classes using 8-bit integer (int8) quantization, a departure from standard 32-bit floating point (fp32) models. Recognizing the hardware resource limitations in agriculture, our model balances model size, inference time, and accuracy, aligning with practical requirements. We evaluate the approach on ResNet-50 and InceptionV3 architectures, comparing their performance against their int8 quantized versions. Transfer learning and fine-tuning are applied using the DeepWeeds dataset. The results show staggering model size and inference time reductions while maintaining accuracy in real-world production scenarios like Desktop, Mobile and Raspberry Pi. Our work sheds light on a promising direction for efficient AI in agriculture, holding potential for broader applications. Code: //github.com/parikshit14/QNN-for-weed
We introduce JAX FDM, a differentiable solver to design mechanically efficient shapes for 3D structures conditioned on target architectural, fabrication and structural properties. Examples of such structures are domes, cable nets and towers. JAX FDM solves these inverse form-finding problems by combining the force density method, differentiable sparsity and gradient-based optimization. Our solver can be paired with other libraries in the JAX ecosystem to facilitate the integration of form-finding simulations with neural networks. We showcase the features of JAX FDM with two design examples. JAX FDM is available as an open-source library at //github.com/arpastrana/jax_fdm.
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.
This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.