Explainable Artificial Intelligence (XAI) is a set of techniques that allows the understanding of both technical and non-technical aspects of Artificial Intelligence (AI) systems. XAI is crucial to help satisfying the increasingly important demand of \emph{trustworthy} Artificial Intelligence, characterized by fundamental characteristics such as respect of human autonomy, prevention of harm, transparency, accountability, etc. Within XAI techniques, counterfactual explanations aim to provide to end users a set of features (and their corresponding values) that need to be changed in order to achieve a desired outcome. Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations, and in particular they fall short of considering the causal impact of such actions. In this paper, we present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations capturing by design the underlying causal relations from the data, and at the same time to provide feasible recommendations to reach the proposed profile. Moreover, our methodology has the advantage that it can be set on top of existing counterfactuals generator algorithms, thus minimising the complexity of imposing additional causal constrains. We demonstrate the effectiveness of our approach with a set of different experiments using synthetic and real datasets (including a proprietary dataset of the financial domain).
As machine learning is increasingly applied to high-impact, high-risk domains, there have been a number of new methods aimed at making AI models more human interpretable. Despite the recent growth of interpretability work, there is a lack of systematic evaluation of proposed techniques. In this work, we propose a novel human evaluation framework HIVE (Human Interpretability of Visual Explanations) for diverse interpretability methods in computer vision; to the best of our knowledge, this is the first work of its kind. We argue that human studies should be the gold standard in properly evaluating how interpretable a method is to human users. While human studies are often avoided due to challenges associated with cost, study design, and cross-method comparison, we describe how our framework mitigates these issues and conduct IRB-approved studies of four methods that represent the diversity of interpretability works: GradCAM, BagNet, ProtoPNet, and ProtoTree. Our results suggest that explanations (regardless of if they are actually correct) engender human trust, yet are not distinct enough for users to distinguish between correct and incorrect predictions. Lastly, we also open-source our framework to enable future studies and to encourage more human-centered approaches to interpretability.
Human migration patterns influence the redistribution of population characteristics over the geography and since such distributions are closely related to social and economic outcomes, investigating the structure and dynamics of internal migration plays a crucial role in understanding and designing policies for such systems. We provide an in-depth investigation into the structure and dynamics of the internal migration in Turkey from 2008 to 2020. We identify a set of classical migration laws and examine them via various methods for signed network analysis, ego network analysis, representation learning, temporal stability analysis, community detection, and network visualization. The findings show that, in line with the classical migration laws, most migration links are geographically bounded with several exceptions involving cities with large economic activity, major migration flows are countered with migration flows in the opposite direction, there are well-defined migration routes, and the migration system is generally stable over the investigated period. Apart from these general results, we also provide unique and specific insights into Turkey. Overall, the novel toolset we employ for the first time in the literature allows the investigation of selected migration laws from a complex networks perspective and sheds light on future migration research on different geographies.
Due to the significant advancement of Natural Language Processing and Computer Vision-based models, Visual Question Answering (VQA) systems are becoming more intelligent and advanced. However, they are still error-prone when dealing with relatively complex questions. Therefore, it is important to understand the behaviour of the VQA models before adopting their results. In this paper, we introduce an interpretability approach for VQA models by generating counterfactual images. Specifically, the generated image is supposed to have the minimal possible change to the original image and leads the VQA model to give a different answer. In addition, our approach ensures that the generated image is realistic. Since quantitative metrics cannot be employed to evaluate the interpretability of the model, we carried out a user study to assess different aspects of our approach. In addition to interpreting the result of VQA models on single images, the obtained results and the discussion provides an extensive explanation of VQA models' behaviour.
Context: Safety is of paramount importance for cyber-physical systems in domains such as automotive, robotics, and avionics. Formal methods such as model checking are one way to ensure the safety of cyber-physical systems. However, adoption of formal methods in industry is hindered by usability issues, particularly the difficulty of understanding model checking results. Objective: We want to provide an overview of the state of the art for counterexample explanation by investigating the contexts, techniques, and evaluation of research approaches in this field. This overview shall provide an understanding of current and guide future research. Method: To provide this overview, we conducted a systematic literature review. The survey comprises 116 publications that address counterexample explanations for model checking. Results: Most primary studies provide counterexample explanations graphically or as traces, minimize counterexamples to reduce complexity, localize errors in the models expressed in the input formats of model checkers, support linear temporal logic or computation tree logic specifications, and use model checkers of the Symbolic Model Verifier family. Several studies evaluate their approaches in safety-critical domains with industrial applications. Conclusion: We notably see a lack of research on counterexample explanation that targets probabilistic and real-time systems, leverages the explanations to domain-specific models, and evaluates approaches in user studies. We conclude by discussing the adequacy of different types of explanations for users with varying domain and formal methods expertise, showing the need to support laypersons in understanding model checking results to increase adoption of formal methods in industry.
Starting from the design philosophy of "user-centered design", this paper analyzes the human factors characteristics of intelligent human-computer interaction (iHCI) and proposes a concept of "user-oriented iHCI". It further proposes a new human factors framework for iHCI based on the theories of joint cognitive systems, situation awareness, and intelligent agents. With the help of the new concept and framework, the paper analyzes the human factors issues in the ecosystem of autonomous vehicle co-driving and layouts future research agenda. Finally, the paper analyzes the two important research areas in iHCI (i.e., user intention recognition, human-computer collaboration) and points out the focus of human factors research in the future.
Counterfactual explanations are usually generated through heuristics that are sensitive to the search's initial conditions. The absence of guarantees of performance and robustness hinders trustworthiness. In this paper, we take a disciplined approach towards counterfactual explanations for tree ensembles. We advocate for a model-based search aiming at "optimal" explanations and propose efficient mixed-integer programming approaches. We show that isolation forests can be modeled within our framework to focus the search on plausible explanations with a low outlier score. We provide comprehensive coverage of additional constraints that model important objectives, heterogeneous data types, structural constraints on the feature space, along with resource and actionability restrictions. Our experimental analyses demonstrate that the proposed search approach requires a computational effort that is orders of magnitude smaller than previous mathematical programming algorithms. It scales up to large data sets and tree ensembles, where it provides, within seconds, systematic explanations grounded on well-defined models solved to optimality.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Visual Question Answering (VQA) models tend to rely on the language bias and thus fail to learn the reasoning from visual knowledge, which is however the original intention of VQA. In this paper, we propose a novel cause-effect look at the language bias, where the bias is formulated as the direct effect of question on answer from the view of causal inference. The effect can be captured by counterfactual VQA, where the image had not existed in an imagined scenario. Our proposed cause-effect look 1) is general to any baseline VQA architecture, 2) achieves significant improvement on the language-bias sensitive VQA-CP dataset, and 3) fills the theoretical gap in recent language prior based works.
Most existing work on automated fact checking is concerned with predicting the veracity of claims based on metadata, social network spread, language used in claims, and, more recently, evidence supporting or denying claims. A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process -- generating justifications for verdicts on claims. This paper provides the first study of how these explanations can be generated automatically based on available claim context, and how this task can be modelled jointly with veracity prediction. Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system. The results of a manual evaluation further suggest that the informativeness, coverage and overall quality of the generated explanations are also improved in the multi-task model.
Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.