亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unmanned aerial vehicles (UAVs), especially fixed-wing ones that withstand strong winds, have great potential for oceanic exploration and research. This paper studies a UAV-aided maritime data collection system with a fixed-wing UAV dispatched to collect data from marine buoys. We aim to minimize the UAV's energy consumption in completing the task by jointly optimizing the communication time scheduling among the buoys and the UAV's flight trajectory subject to wind effect, which is a non-convex problem and difficult to solve optimally. Existing techniques such as the successive convex approximation (SCA) method provide efficient sub-optimal solutions for collecting small/moderate data volume, whereas the solution heavily relies on the trajectory initialization and has not explicitly considered the wind effect, while the computational complexity and resulted trajectory complexity both become prohibitive for the task with large data volume. To this end, we propose a new cyclical trajectory design framework that can handle arbitrary data volume efficiently subject to wind effect. Specifically, the proposed UAV trajectory comprises multiple cyclical laps, each responsible for collecting only a subset of data and thereby significantly reducing the computational/trajectory complexity, which allows searching for better trajectory initialization that fits the buoys' topology and the wind. Numerical results show that the proposed cyclical scheme outperforms the benchmark one-flight-only scheme in general. Moreover, the optimized cyclical 8-shape trajectory can proactively exploit the wind and achieve lower energy consumption compared with the case without wind.

相關內容

CC在計算復雜性方面表現突出。它的學科處于數學與計算機理論科學的交叉點,具有清晰的數學輪廓和嚴格的數學格式。官網鏈接: · DNN · 模型評估 · Processing(編程語言) · 離散化 ·
2022 年 1 月 9 日

Recently, the applications of deep neural network (DNN) have been very prominent in many fields such as computer vision (CV) and natural language processing (NLP) due to its superior feature extraction performance. However, the high-dimension parameter model and large-scale mathematical calculation restrict the execution efficiency, especially for Internet of Things (IoT) devices. Different from the previous cloud/edge-only pattern that brings huge pressure for uplink communication and device-only fashion that undertakes unaffordable calculation strength, we highlight the collaborative computation between the device and edge for DNN models, which can achieve a good balance between the communication load and execution accuracy. Specifically, a systematic on-demand co-inference framework is proposed to exploit the multi-branch structure, in which the pre-trained Alexnet is right-sized through \emph{early-exit} and partitioned at an intermediate DNN layer. The integer quantization is enforced to further compress transmission bits. As a result, we establish a new Deep Reinforcement Learning (DRL) optimizer-Soft Actor Critic for discrete (SAC-d), which generates the \emph{exit point}, \emph{partition point}, and \emph{compressing bits} by soft policy iterations. Based on the latency and accuracy aware reward design, such an optimizer can well adapt to the complex environment like dynamic wireless channel and arbitrary CPU processing, and is capable of supporting the 5G URLLC. Real-world experiment on Raspberry Pi 4 and PC shows the outperformance of the proposed solution.

This article addresses the problem of dynamic on-line estimation and compensation of hard-iron and soft-iron biases of 3-axis magnetometers under dynamic motion in field robotics, utilizing only biased measurements from a 3-axis magnetometer and a 3-axis angular rate sensor. The proposed magnetometer and angular velocity bias estimator (MAVBE) utilizes a 15-state process model encoding the nonlinear process dynamics for the magnetometer signal subject to angular velocity excursions, while simultaneously estimating 9 magnetometer bias parameters and 3 angular rate sensor bias parameters, within an extended Kalman filter framework. Bias parameter local observability is numerically evaluated. The bias-compensated signals, together with 3-axis accelerometer signals, are utilized to estimate bias compensated magnetic geodetic heading. Performance of the proposed MAVBE method is evaluated in comparison to the widely cited magnetometer-only TWOSTEP method in numerical simulations, laboratory experiments, and full-scale field trials of an instrumented autonomous underwater vehicle in the Chesapeake Bay, MD, USA. For the proposed MAVBE, (i) instrument attitude is not required to estimate biases, and the results show that (ii) the biases are locally observable, (iii) the bias estimates converge rapidly to true bias parameters, (iv) only modest instrument excitation is required for bias estimate convergence, and (v) compensation for magnetometer hard-iron and soft-iron biases dramatically improves dynamic heading estimation accuracy.

Exploiting sparsity is a key technique in accelerating quantized convolutional neural network (CNN) inference on mobile devices. Prior sparse CNN accelerators largely exploit un-structured sparsity and achieve significant speedups. Due to the unbounded, largely unpredictable sparsity patterns, however, exploiting unstructured sparsity requires complicated hardware design with significant energy and area overhead, which is particularly detrimental to mobile/IoT inference scenarios where energy and area efficiency are crucial. We propose to exploit structured sparsity, more specifically, Density Bound Block (DBB) sparsity for both weights and activations. DBB block tensors bound the maximum number of non-zeros per block. DBB thus exposes statically predictable sparsity patterns that enable lean sparsity-exploiting hardware. We propose new hardware primitives to implement DBB sparsity for (static) weights and (dynamic) activations, respectively, with very low overheads. Building on top of the primitives, we describe S2TA, a systolic array-based CNN accelerator that exploits joint weight and activation DBB sparsity and new dimensions of data reuse unavailable on the traditional systolic array. S2TA in 16nm achieves more than 2x speedup and energy reduction compared to a strong baseline of a systolic array with zero-value clock gating, over five popular CNN benchmarks. Compared to two recent non-systolic sparse accelerators, Eyeriss v2 (65nm) and SparTen (45nm), S2TA in 65nm uses about 2.2x and 3.1x less energy per inference, respectively.

In this paper, a cyclic-prefixed single-carrier (CPSC) transmission scheme with phase shift keying (PSK) signaling is presented for broadband wireless communications systems empowered by a reconfigurable intelligent surface (RIS). In the proposed CPSC-RIS, the RIS is configured according to the transmitted PSK symbols such that different cyclically delayed versions of the incident signal are created by the RIS to achieve cyclic delay diversity. A practical and efficient channel estimator is developed for CPSC-RIS and the mean square error of the channel estimation is expressed in closed-form. We analyze the bit error rate (BER) performance of CPSC-RIS over frequency-selective Nakagami-$m$ fading channels. An upper bound on the BER is derived by assuming the maximum-likelihood detection. Furthermore, by resorting to the concept of index modulation (IM), we propose an extension of CPSC-RIS, termed CPSC-RIS-IM, which enhances the spectral efficiency. In addition to conventional constellation information of PSK symbols, CPSC-RIS-IM uses the full permutations of cyclic delays caused by the RIS to carry information. A sub-optimal receiver is designed for CPSC-RIS-IM to aim at low computational complexity. Our simulation results in terms of BER corroborate the performance analysis and the superiority of CPSC-RIS(-IM) over the conventional CPSC without an RIS and orthogonal frequency division multiplexing with an RIS.

This paper investigates traffic flow modeling issue in multi-services oriented unmanned aerial vehicle (UAV)-enabled wireless networks, which is critical for supporting future various applications of such networks. We propose a general traffic flow model for multi-services oriented UAV-enable wireless networks. Under this model, we first classify the network services into three subsets: telemetry, Internet of Things (IoT), and streaming data. Based on the Pareto distribution, we then partition all UAVs into three subgroups with different network usage. We further determine the number of packets for different network services and total data size according to the packet arrival rate for the nine segments, each of which represents one map relationship between a subset of services and a subgroup of UAVs. Simulation results are provided to illustrate that the number of packets and the data size predicted by our traffic model can well match with these under a real scenario.

Several solutions have been proposed in the literature to address the Unmanned Aerial Vehicles (UAVs) collision avoidance problem. Most of these solutions consider that the ground controller system (GCS) determines the path of a UAV before starting a particular mission at hand. Furthermore, these solutions expect the occurrence of collisions based only on the GPS localization of UAVs as well as via object-detecting sensors placed on board UAVs. The sensors' sensitivity to environmental disturbances and the UAVs' influence on their accuracy impact negatively the efficiency of these solutions. In this vein, this paper proposes a new energy and delay-aware physical collision avoidance solution for UAVs. The solution is dubbed EDC-UAV. The primary goal of EDC-UAV is to build inflight safe UAVs trajectories while minimizing the energy consumption and response time. We assume that each UAV is equipped with a global positioning system (GPS) sensor to identify its position. Moreover, we take into account the margin error of the GPS to provide the position of a given UAV. The location of each UAV is gathered by a cluster head, which is the UAV that has either the highest autonomy or the greatest computational capacity. The cluster head runs the EDC-UAV algorithm to control the rest of the UAVs, thus guaranteeing a collision-free mission and minimizing the energy consumption to achieve different purposes. The proper operation of our solution is validated through simulations. The obtained results demonstrate the efficiency of EDC-UAV in achieving its design goals.

In the paper, we propose a class of accelerated zeroth-order and first-order momentum methods for both nonconvex mini-optimization and minimax-optimization. Specifically, we propose a new accelerated zeroth-order momentum (Acc-ZOM) method for black-box mini-optimization. Moreover, we prove that our Acc-ZOM method achieves a lower query complexity of $\tilde{O}(d^{3/4}\epsilon^{-3})$ for finding an $\epsilon$-stationary point, which improves the best known result by a factor of $O(d^{1/4})$ where $d$ denotes the variable dimension. In particular, the Acc-ZOM does not require large batches required in the existing zeroth-order stochastic algorithms. Meanwhile, we propose an accelerated \textbf{zeroth-order} momentum descent ascent (Acc-ZOMDA) method for \textbf{black-box} minimax-optimization, which obtains a query complexity of $\tilde{O}((d_1+d_2)^{3/4}\kappa_y^{4.5}\epsilon^{-3})$ without large batches for finding an $\epsilon$-stationary point, where $d_1$ and $d_2$ denote variable dimensions and $\kappa_y$ is condition number. Moreover, we propose an accelerated \textbf{first-order} momentum descent ascent (Acc-MDA) method for \textbf{white-box} minimax optimization, which has a gradient complexity of $\tilde{O}(\kappa_y^{4.5}\epsilon^{-3})$ without large batches for finding an $\epsilon$-stationary point. In particular, our Acc-MDA can obtain a lower gradient complexity of $\tilde{O}(\kappa_y^{2.5}\epsilon^{-3})$ with a batch size $O(\kappa_y^4)$. Extensive experimental results on the black-box adversarial attack to deep neural networks (DNNs) and poisoning attack demonstrate efficiency of our algorithms.

Safe operation of systems such as robots requires them to plan and execute trajectories subject to safety constraints. When those systems are subject to uncertainties in their dynamics, it is challenging to ensure that the constraints are not violated. In this paper, we propose Safe-CDDP, a safe trajectory optimization and control approach for systems under additive uncertainties and non-linear safety constraints based on constrained differential dynamic programming (DDP). The safety of the robot during its motion is formulated as chance constraints with user-chosen probabilities of constraint satisfaction. The chance constraints are transformed into deterministic ones in DDP formulation by constraint tightening. To avoid over-conservatism during constraint tightening, linear control gains of the feedback policy derived from the constrained DDP are used in the approximation of closed-loop uncertainty propagation in prediction. The proposed algorithm is empirically evaluated on three different robot dynamics with up to 12 degrees of freedom in simulation. The computational feasibility and applicability of the approach are demonstrated with a physical hardware implementation.

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.

In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.

北京阿比特科技有限公司