Models such as finite state automata are widely used to abstract the behavior of software systems by capturing the sequences of events observable during their execution. Nevertheless, models rarely exist in practice and, when they do, get easily outdated; moreover, manually building and maintaining models is costly and error-prone. As a result, a variety of model inference methods that automatically construct models from execution traces have been proposed to address these issues. However, performing a systematic and reliable accuracy assessment of inferred models remains an open problem. Even when a reference model is given, most existing model accuracy assessment methods may return misleading and biased results. This is mainly due to their reliance on statistical estimators over a finite number of randomly generated traces, introducing avoidable uncertainty about the estimation and being sensitive to the parameters of the random trace generative process. This paper addresses this problem by developing a systematic approach based on analytic combinatorics that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures. We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools against reference models from established specification mining benchmarks.
The notion of robustness in XAI refers to the observed variations in the explanation of the prediction of a learned model with respect to changes in the input leading to that prediction. Intuitively, if the input being explained is modified slightly subtly enough so as to not change the prediction of the model too much, then we would expect that the explanation provided for that new input does not change much either. We argue that a combination through discriminative averaging of ensembles weak learners explanations can improve the robustness of explanations in ensemble methods.This approach has been implemented and tested with post-hoc SHAP method and Random Forest ensemble with successful results. The improvements obtained have been measured quantitatively and some insights into the explicability robustness in ensemble methods are presented.
The impressive achievements of transformers force NLP researchers to delve into how these models represent the underlying structure of natural language. In this paper, we propose a novel standpoint to investigate the above issue: using typological similarities among languages to observe how their respective monolingual models encode structural information. We aim to layer-wise compare transformers for typologically similar languages to observe whether these similarities emerge for particular layers. For this investigation, we propose to use Centered Kernel Alignment to measure similarity among weight matrices. We found that syntactic typological similarity is consistent with the similarity between the weights in the middle layers, which are the pretrained BERT layers to which syntax encoding is generally attributed. Moreover, we observe that a domain adaptation on semantically equivalent texts enhances this similarity among weight matrices.
Dense subgraph extraction is a fundamental problem in graph analysis and data mining, aimed at identifying cohesive and densely connected substructures within a given graph. It plays a crucial role in various domains, including social network analysis, biological network analysis, recommendation systems, and community detection. However, extracting a subgraph with the highest node similarity is a lack of exploration. To address this problem, we studied the Member Selection Problem and extended it with a dynamic constraint variant. By incorporating dynamic constraints, our algorithm can adapt to changing conditions or requirements, allowing for more flexible and personalized subgraph extraction. This approach enables the algorithm to provide tailored solutions that meet specific needs, even in scenarios where constraints may vary over time. We also provide the theoretical analysis to show that our algorithm is 1/3-approximation. Eventually, the experiments show that our algorithm is effective and efficient in tackling the member selection problem with dynamic constraints.
Active learning of physical systems must commonly respect practical safety constraints, which restricts the exploration of the design space. Gaussian Processes (GPs) and their calibrated uncertainty estimations are widely used for this purpose. In many technical applications the design space is explored via continuous trajectories, along which the safety needs to be assessed. This is particularly challenging for strict safety requirements in GP methods, as it employs computationally expensive Monte-Carlo sampling of high quantiles. We address these challenges by providing provable safety bounds based on the adaptively sampled median of the supremum of the posterior GP. Our method significantly reduces the number of samples required for estimating high safety probabilities, resulting in faster evaluation without sacrificing accuracy and exploration speed. The effectiveness of our safe active learning approach is demonstrated through extensive simulations and validated using a real-world engine example.
Out-of-distribution detection is a crucial technique for deploying machine learning models in the real world to handle the unseen scenarios.In this paper, we propose a simple but effective Neural Activation Prior (NAP) for out-of-distribution detection (OOD). Our neural activation prior is based on a key observation that, for a channel before the global pooling layer of a fully trained neural network, the probability of a few of its neurons being activated with a larger response by an in-distribution (ID) sample is significantly higher than that by an OOD sample. An intuitive explanation is each channel in a model fully trained on ID dataset would play a role in detecting a certain pattern in the samples within the ID dataset, and a few neurons can be activated with a large response when the pattern is detected in an input sample. Thus, a new scoring function based on this prior is proposed to highlight the role of these strongly activated neurons in OOD detection. This approach is plug-and-play and does not lead to any performance degradation on in-distribution data classification and requires no extra training or statistics from training or external datasets. Notice that previous methods primarily rely on post-global-pooling features of the neural networks, while the within-channel distribution information we leverage would be discarded by the global pooling operator. Consequently, our method is orthogonal to existing approaches and can be effectively combined with them in various applications. Experimental results show that our method achieves the state-of-the-art performance on CIFAR-10, CIFAR-100 and ImageNet datasets, which demonstrates the power of the proposed prior.
Recent advancements in the realm of deep learning, particularly in the development of large language models (LLMs), have demonstrated AI's ability to tackle complex mathematical problems or solving programming challenges. However, the capability to solve well-defined problems based on extensive training data differs significantly from the nuanced process of making scientific discoveries. Trained on almost all human knowledge available, today's sophisticated LLMs basically learn to predict sequences of tokens. They generate mathematical derivations and write code in a similar way as writing an essay, and do not have the ability to pioneer scientific discoveries in the manner a human scientist would do. In this study we delve into the potential of using deep learning to rediscover a fundamental mathematical concept: integrals. By defining integrals as area under the curve, we illustrate how AI can deduce the integral of a given function, exemplified by inferring $\int_{0}^{x} t^2 dt = \frac{x^3}{3}$ and $\int_{0}^{x} ae^{bt} dt = \frac{a}{b} e^{bx} - \frac{a}{b}$. Our experiments show that deep learning models can approach the task of inferring integrals either through a sequence-to-sequence model, akin to language translation, or by uncovering the rudimentary principles of integration, such as $\int_{0}^{x} t^n dt = \frac{x^{n+1}}{n+1}$.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.