With the rapid growth of threats, sophistication and diversity in the manner of intrusion, traditional belt barrier systems are now faced with a major challenge of providing high and concrete coverage quality to expand the guarding service market. Recent efforts aim at constructing a belt barrier by deploying bistatic radar(s) on a specific line regardless of the limitation on deployment locations, to keep the width of the barrier from going below a specific threshold and the total bistatic radar placement cost is minimized, referred to as the Minimum Cost Linear Placement (MCLP) problem. The existing solutions are heuristic, and their validity is tightly bound by the barrier width parameter that these solutions only work for a fixed barrier width value. In this work, we propose an optimal solution, referred to as the Opt_MCLP, for the "open MCLP problem" that works for full range of the barrier width. Through rigorous theoretical analysis and experimentation, we demonstrate that the proposed algorithms perform well in terms of placement cost reduction and barrier coverage guarantee.
Linear programming (LP) is an extremely useful tool which has been successfully applied to solve various problems in a wide range of areas, including operations research, engineering, economics, or even more abstract mathematical areas such as combinatorics. It is also used in many machine learning applications, such as $\ell_1$-regularized SVMs, basis pursuit, nonnegative matrix factorization, etc. Interior Point Methods (IPMs) are one of the most popular methods to solve LPs both in theory and in practice. Their underlying complexity is dominated by the cost of solving a system of linear equations at each iteration. In this paper, we consider both feasible and infeasible IPMs for the special case where the number of variables is much larger than the number of constraints. Using tools from Randomized Linear Algebra, we present a preconditioning technique that, when combined with the iterative solvers such as Conjugate Gradient or Chebyshev Iteration, provably guarantees that IPM algorithms (suitably modified to account for the error incurred by the approximate solver), converge to a feasible, approximately optimal solution, without increasing their iteration complexity. Our empirical evaluations verify our theoretical results on both real-world and synthetic data.
We consider the problem of learning the optimal threshold policy for control problems. Threshold policies make control decisions by evaluating whether an element of the system state exceeds a certain threshold, whose value is determined by other elements of the system state. By leveraging the monotone property of threshold policies, we prove that their policy gradients have a surprisingly simple expression. We use this simple expression to build an off-policy actor-critic algorithm for learning the optimal threshold policy. Simulation results show that our policy significantly outperforms other reinforcement learning algorithms due to its ability to exploit the monotone property. In addition, we show that the Whittle index, a powerful tool for restless multi-armed bandit problems, is equivalent to the optimal threshold policy for an alternative problem. This observation leads to a simple algorithm that finds the Whittle index by learning the optimal threshold policy in the alternative problem. Simulation results show that our algorithm learns the Whittle index much faster than several recent studies that learn the Whittle index through indirect means.
The Strong Exponential Time Hypothesis (SETH) asserts that for every $\varepsilon>0$ there exists $k$ such that $k$-SAT requires time $(2-\varepsilon)^n$. The field of fine-grained complexity has leveraged SETH to prove quite tight conditional lower bounds for dozens of problems in various domains and complexity classes, including Edit Distance, Graph Diameter, Hitting Set, Independent Set, and Orthogonal Vectors. Yet, it has been repeatedly asked in the literature whether SETH-hardness results can be proven for other fundamental problems such as Hamiltonian Path, Independent Set, Chromatic Number, MAX-$k$-SAT, and Set Cover. In this paper, we show that fine-grained reductions implying even $\lambda^n$-hardness of these problems from SETH for any $\lambda>1$, would imply new circuit lower bounds: super-linear lower bounds for Boolean series-parallel circuits or polynomial lower bounds for arithmetic circuits (each of which is a four-decade open question). We also extend this barrier result to the class of parameterized problems. Namely, for every $\lambda>1$ we conditionally rule out fine-grained reductions implying SETH-based lower bounds of $\lambda^k$ for a number of problems parameterized by the solution size $k$. Our main technical tool is a new concept called polynomial formulations. In particular, we show that many problems can be represented by relatively succinct low-degree polynomials, and that any problem with such a representation cannot be proven SETH-hard (without proving new circuit lower bounds).
We give algorithms for approximating the partition function of the ferromagnetic Potts model on $d$-regular expanding graphs. We require much weaker expansion than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models, using extremal graph theory and applications of Karger's algorithm to counting cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We believe that these methods can shed more light on other important problems such as sub-exponential algorithms for approximate counting problems.
Motivated by increasing pressure for decision makers to shorten the time required to evaluate the efficacy of a treatment such that treatments deemed safe and effective can be made publicly available, there has been substantial recent interest in using an earlier or easier to measure surrogate marker, $S$, in place of the primary outcome, $Y$. To validate the utility of a surrogate marker in these settings, a commonly advocated measure is the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate marker (PTE). Model based and model free estimators for PTE have also been developed. While this measure is very intuitive, it does not directly address the important questions of how $S$ can be used to make inference of the unavailable $Y$ in the next phase clinical trials. In this paper, to optimally use the information of surrogate S, we provide a framework for deriving an optimal transformation of $S$, $g_{opt}(S)$, such that the treatment effect on $g_{opt}(S)$ maximally approximates the treatment effect on $Y$ in a certain sense. Based on the optimally transformed surrogate, $g_{opt}(S)$, we propose a new measure to quantify surrogacy, the relative power (RP), and demonstrate how RP can be used to make decisions with $S$ instead of $Y$ for next phase trials. We propose nonparametric estimation procedures, derive asymptotic properties, and compare the RP measure with the PTE measure. Finite sample performance of our estimators is assessed via a simulation study. We illustrate our proposed procedures using an application to the Diabetes Prevention Program (DPP) clinical trial to evaluate the utility of hemoglobin A1c and fasting plasma glucose as surrogate markers for diabetes.
In narrow spaces, motion planning based on the traditional hierarchical autonomous system could cause collisions due to mapping, localization, and control noises. Additionally, it is disabled when mapless. To tackle these problems, we leverage deep reinforcement learning which is verified to be effective in self-decision-making, to self-explore in narrow spaces without a map while avoiding collisions. Specifically, based on our Ackermann-steering rectangular-shaped ZebraT robot and its Gazebo simulator, we propose the rectangular safety region to represent states and detect collisions for rectangular-shaped robots, and a carefully crafted reward function for reinforcement learning that does not require the destination information. Then we benchmark five reinforcement learning algorithms including DDPG, DQN, SAC, PPO, and PPO-discrete, in a simulated narrow track. After training, the well-performed DDPG and DQN models can be transferred to three brand new simulated tracks, and furthermore to three real-world tracks.
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator). We first consider $\gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $\mathcal{S}$ and action space $\mathcal{A}$. Despite a number of prior works tackling this problem, a complete picture of the trade-offs between sample complexity and statistical accuracy is yet to be determined. In particular, all prior results suffer from a severe sample size barrier, in the sense that their claimed statistical guarantees hold only when the sample size exceeds at least $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^2}$. The current paper overcomes this barrier by certifying the minimax optimality of two algorithms -- a perturbed model-based algorithm and a conservative model-based algorithm -- as soon as the sample size exceeds the order of $\frac{|\mathcal{S}||\mathcal{A}|}{1-\gamma}$ (modulo some log factor). Moving beyond infinite-horizon MDPs, we further study time-inhomogeneous finite-horizon MDPs, and prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level. To the best of our knowledge, this work delivers the first minimax-optimal guarantees that accommodate the entire range of sample sizes (beyond which finding a meaningful policy is information theoretically infeasible).
Classical results in general equilibrium theory assume divisible goods and convex preferences of market participants. In many real-world markets, participants have non-convex preferences and the allocation problem needs to consider complex constraints. Electricity markets are a prime example. In such markets, Walrasian prices are impossible, and heuristic pricing rules based on the dual of the relaxed allocation problem are used in practice. However, these rules have been criticized for high side-payments and inadequate congestion signals. We show that existing pricing heuristics optimize specific design goals that can be conflicting. The trade-offs can be substantial, and we establish that the design of pricing rules is fundamentally a multi-objective optimization problem addressing different incentives. In addition to traditional multi-objective optimization techniques using weighing of individual objectives, we introduce a novel parameter-free pricing rule that minimizes incentives for market participants to deviate locally. Our findings show how the new pricing rule capitalizes on the upsides of existing pricing rules under scrutiny today. It leads to prices that incur low make-whole payments while providing adequate congestion signals and low lost opportunity costs. Our suggested pricing rule does not require weighing of objectives, it is computationally scalable, and balances trade-offs in a principled manner, addressing an important policy issue in electricity markets.
Variational Bayesian posterior inference often requires simplifying approximations such as mean-field parametrisation to ensure tractability. However, prior work has associated the variational mean-field approximation for Bayesian neural networks with underfitting in the case of small datasets or large model sizes. In this work, we show that invariances in the likelihood function of over-parametrised models contribute to this phenomenon because these invariances complicate the structure of the posterior by introducing discrete and/or continuous modes which cannot be well approximated by Gaussian mean-field distributions. In particular, we show that the mean-field approximation has an additional gap in the evidence lower bound compared to a purpose-built posterior that takes into account the known invariances. Importantly, this invariance gap is not constant; it vanishes as the approximation reverts to the prior. We proceed by first considering translation invariances in a linear model with a single data point in detail. We show that, while the true posterior can be constructed from a mean-field parametrisation, this is achieved only if the objective function takes into account the invariance gap. Then, we transfer our analysis of the linear model to neural networks. Our analysis provides a framework for future work to explore solutions to the invariance problem.
Background: Instrumental variables (IVs) can be used to provide evidence as to whether a treatment X has a causal effect on an outcome Y. Even if the instrument Z satisfies the three core IV assumptions of relevance, independence and the exclusion restriction, further assumptions are required to identify the average causal effect (ACE) of X on Y. Sufficient assumptions for this include: homogeneity in the causal effect of X on Y; homogeneity in the association of Z with X; and no effect modification (NEM). Methods: We describe the NO Simultaneous Heterogeneity (NOSH) assumption, which requires the heterogeneity in the X-Y causal effect to be mean independent of (i.e., uncorrelated with) both Z and heterogeneity in the Z-X association. This happens, for example, if there are no common modifiers of the X-Y effect and the Z-X association, and the X-Y effect is additive linear. We illustrate NOSH using simulations and by re-examining selected published studies. Results: When NOSH holds, the Wald estimand equals the ACE even if both homogeneity assumptions and NEM (which we demonstrate to be special cases of - and therefore stronger than - NOSH) are violated. Conclusions: NOSH is sufficient for identifying the ACE using IVs. Since NOSH is weaker than existing assumptions for ACE identification, doing so may be more plausible than previously anticipated.