亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-material problems often exhibit complex geometries along with physical responses presenting large spatial gradients or discontinuities. In these cases, providing high-quality body-fitted finite element analysis meshes and obtaining accurate solutions remain challenging. Immersed boundary techniques provide elegant solutions for such problems. Enrichment methods alleviate the need for generating conforming analysis grids by capturing discontinuities within mesh elements. Additionally, increased accuracy of physical responses and geometry description can be achieved with higher-order approximation bases. In particular, using B-splines has become popular with the development of IsoGeometric Analysis. In this work, an eXtended IsoGeometric Analysis (XIGA) approach is proposed for multi-material problems. The computational domain geometry is described implicitly by level set functions. A novel generalized Heaviside enrichment strategy is employed to accommodate an arbitrary number of materials without artificially stiffening the physical response. Higher-order B-spline functions are used for both geometry representation and analysis. Boundary and interface conditions are enforced weakly via Nitsche's method, and a new face-oriented ghost stabilization methodology is used to mitigate numerical instabilities arising from small material integration subdomains. Two- and three-dimensional heat transfer and elasticity problems are solved to validate the approach. Numerical studies provide insight into the ability to handle multiple materials considering sharp-edged and curved interfaces, as well as the impact of higher-order bases and stabilization on the solution accuracy and conditioning.

相關內容

機器學習系統設計系統評估標準

Isogeometric analysis with the boundary element method (IGABEM) has recently gained interest. In this paper, the approximability of IGABEM on 3D acoustic scattering problems will be investigated and a new improved BeTSSi submarine will be presented as a benchmark example. Both Galerkin and collocation are considered in combination with several boundary integral equations (BIE). In addition to the conventional BIE, regularized versions of this BIE will be considered. Moreover, the hyper-singular BIE and the Burton--Miller formulation are also considered. A new adaptive integration routine is presented, and the numerical examples show the importance of the integration procedure in the boundary element method. The numerical examples also include comparison between standard BEM and IGABEM, which again verifies the higher accuracy obtained from the increased inter-element continuity of the spline basis functions. One of the main objectives in this paper is benchmarking acoustic scattering problems, and the method of manufactured solution will be used frequently in this regard.

The perfectly matched layer (PML) formulation is a prominent way of handling radiation problems in unbounded domain and has gained interest due to its simple implementation in finite element codes. However, its simplicity can be advanced further using the isogeometric framework. This work presents a spline based PML formulation which avoids additional coordinate transformation as the formulation is based on the same space in which the numerical solution is sought. The procedure can be automated for any convex artificial boundary. This removes restrictions on the domain construction using PML and can therefore reduce computational cost and improve mesh quality. The usage of spline basis functions with higher continuity also improves the accuracy of the numerical solution.

This work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system, which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff-Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface deformation gradient is employed, such that an intermediate surface configuration is introduced. The surface metric and curvature of this intermediate configuration follow from the solution of nonlinear evolution laws - ordinary differential equations (ODEs) - that stem from a generalized viscoelastic solid model. The evolution laws are integrated numerically with the implicit Euler scheme and linearized within the Newton-Raphson scheme of the nonlinear finite element framework. The implementation of surface and bending viscosity is verified with the help of analytical solutions and shows ideal convergence behavior. The chosen numerical examples capture large deformations and typical viscoelasticity behavior, such as creep, relaxation, and strain rate dependence. It is shown that the proposed formulation can also be straightforwardly applied to model boundary viscoelasticity of 3D bodies.

We introduce and analyze various Regularized Combined Field Integral Equations (CFIER) formulations of time-harmonic Navier equations in media with piece-wise constant material properties. These formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within which the well posedness of CIER formulations can be established. We also use the DtN approximations to derive and analyze Optimized Schwarz (OS) methods for the solution of elastodynamics transmission problems. The pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels of Navier boundary integral operators which is also the basis of high-order Nystr\"om quadratures for their discretizations. Based on these high-order discretizations we investigate the rate of convergence of iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We present a variety of numerical results that illustrate that the CFIER methodology leads to important computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive in the high-frequency high-contrast regime.

In this paper we get error bounds for fully discrete approximations of infinite horizon problems via the dynamic programming approach. It is well known that considering a time discretization with a positive step size $h$ an error bound of size $h$ can be proved for the difference between the value function (viscosity solution of the Hamilton-Jacobi-Bellman equation corresponding to the infinite horizon) and the value function of the discrete time problem. However, including also a spatial discretization based on elements of size $k$ an error bound of size $O(k/h)$ can be found in the literature for the error between the value functions of the continuous problem and the fully discrete problem. In this paper we revise the error bound of the fully discrete method and prove, under similar assumptions to those of the time discrete case, that the error of the fully discrete case is in fact $O(h+k)$ which gives first order in time and space for the method. This error bound matches the numerical experiments of many papers in the literature in which the behaviour $1/h$ from the bound $O(k/h)$ have not been observed.

Numerical solution of heterogeneous Helmholtz problems presents various computational challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness and scalability are key for practical and reliable solvers in large-scale applications, especially for large wave number problems. In this work we explore the use of a GenEO-type coarse space to build a two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free meshes, we observe robust convergence, iteration counts that do not increase with the wave number, and good scalability of our approach. We further provide results showing a favourable comparison with the DtN coarse space. Our numerical study shows promise that our solver methodology can be effective for challenging heterogeneous applications.

This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.

In this article we suggest two discretization methods based on isogeometric analysis (IGA) for planar linear elasticity. On the one hand, we apply the well-known ansatz of weakly imposed symmetry for the stress tensor and obtain a well-posed mixed formulation. Such modified mixed problems have been already studied by different authors. But we concentrate on the exploitation of IGA results to handle also curved boundary geometries. On the other hand, we consider the more complicated situation of strong symmetry, i.e. we discretize the mixed weak form determined by the so-called Hellinger-Reissner variational principle. We show the existence of suitable approximate fields leading to an inf-sup stable saddle-point problem. For both discretization approaches we prove convergence statements and in case of weak symmetry we illustrate the approximation behavior by means of several numerical experiments.

Multigrid is a powerful solver for large-scale linear systems arising from discretized partial differential equations. The convergence theory of multigrid methods for symmetric positive definite problems has been well developed over the past decades, while, for nonsymmetric problems, such theory is still not mature. As a foundation for multigrid analysis, two-grid convergence theory plays an important role in motivating multigrid algorithms. Regarding two-grid methods for nonsymmetric problems, most previous works focus on the spectral radius of iteration matrix or rely on convergence measures that are typically difficult to compute in practice. Moreover, the existing results are confined to two-grid methods with exact solution of the coarse-grid system. In this paper, we analyze the convergence of a two-grid method for nonsymmetric positive definite problems (e.g., linear systems arising from the discretizations of convection-diffusion equations). In the case of exact coarse solver, we establish an elegant identity for characterizing two-grid convergence factor, which is measured by a smoother-induced norm. The identity can be conveniently used to derive a class of optimal restriction operators and analyze how the convergence factor is influenced by restriction. More generally, we present some convergence estimates for an inexact variant of the two-grid method, in which both linear and nonlinear coarse solvers are considered.

We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.

北京阿比特科技有限公司