亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the success of large language models, generative retrieval has emerged as a new retrieval technique for recommendation. It can be divided into two stages: the first stage involves constructing discrete Codes (i.e., codes), and the second stage involves decoding the code sequentially via the transformer architecture. Current methods often construct item semantic codes by reconstructing based quantization on item textual representation, but they fail to capture item discrepancy that is essential in modeling item relationships in recommendation sytems. In this paper, we propose to construct the code representation of items by simultaneously considering both item relationships and semantic information. Specifically, we employ a pre-trained language model to extract item's textual description and translate it into item's embedding. Then we propose to enhance the encoder-decoder based RQVAE model with contrastive objectives to learn item code. To be specific, we employ the embeddings generated by the decoder from the samples themselves as positive instances and those from other samples as negative instances. Thus we effectively enhance the item discrepancy across all items, better preserving the item neighbourhood. Finally, we train and test semantic code with with generative retrieval on a sequential recommendation model. Our experiments demonstrate that our method improves NDCG@5 with 43.76% on the MIND dataset and Recall@10 with 80.95% on the Office dataset compared to the previous baselines.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · 縮放 · 可約的 · HTTPS ·
2024 年 6 月 2 日

GFlowNets are probabilistic models that sequentially generate compositional structures through a stochastic policy. Among GFlowNets, temperature-conditional GFlowNets can introduce temperature-based controllability for exploration and exploitation. We propose \textit{Logit-scaling GFlowNets} (Logit-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed approaches introduced numerical challenges in the deep network training, since different temperatures may give rise to very different gradient profiles as well as magnitudes of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. Also, using Logit-GFN, GFlowNets can be improved by having better generalization capabilities in offline learning and mode discovery capabilities in online learning, which is empirically verified in various biological and chemical tasks. Our code is available at \url{//github.com/dbsxodud-11/logit-gfn}

Large language models (LLMs) exhibit complementary strengths in various tasks, motivating the research of LLM ensembling. However, existing work focuses on training an extra reward model or fusion model to select or combine all candidate answers, posing a great challenge to the generalization on unseen data distributions. Besides, prior methods use textual responses as communication media, ignoring the valuable information in the internal representations. In this work, we propose a training-free ensemble framework DeePEn, fusing the informative probability distributions yielded by different LLMs at each decoding step. Unfortunately, the vocabulary discrepancy between heterogeneous LLMs directly makes averaging the distributions unfeasible due to the token misalignment. To address this challenge, DeePEn maps the probability distribution of each model from its own probability space to a universal relative space based on the relative representation theory, and performs aggregation. Next, we devise a search-based inverse transformation to transform the aggregated result back to the probability space of one of the ensembling LLMs (main model), in order to determine the next token. We conduct extensive experiments on ensembles of different number of LLMs, ensembles of LLMs with different architectures, and ensembles between the LLM and the specialist model. Experimental results show that (i) DeePEn achieves consistent improvements across six benchmarks covering subject examination, reasoning, and knowledge, (ii) a well-performing specialist model can benefit from a less effective LLM through distribution fusion, and (iii) DeePEn has complementary strengths with other ensemble methods such as voting.

In applied statistics and machine learning, the "gold standards" used for training are often biased and almost always noisy. Dawid and Skene's justifiably popular crowdsourcing model adjusts for rater (coder, annotator) sensitivity and specificity, but fails to capture distributional properties of rating data gathered for training, which in turn biases training. In this study, we introduce a general purpose measurement-error model with which we can infer consensus categories by adding item-level effects for difficulty, discriminativeness, and guessability. We further show how to constrain the bimodal posterior of these models to avoid (or if necessary, allow) adversarial raters. We validate our model's goodness of fit with posterior predictive checks, the Bayesian analogue of $\chi^2$ tests. Dawid and Skene's model is rejected by goodness of fit tests, whereas our new model, which adjusts for item heterogeneity, is not rejected. We illustrate our new model with two well-studied data sets, binary rating data for caries in dental X-rays and implication in natural language.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Intent classification and slot filling are two essential tasks for natural language understanding. They often suffer from small-scale human-labeled training data, resulting in poor generalization capability, especially for rare words. Recently a new language representation model, BERT (Bidirectional Encoder Representations from Transformers), facilitates pre-training deep bidirectional representations on large-scale unlabeled corpora, and has created state-of-the-art models for a wide variety of natural language processing tasks after simple fine-tuning. However, there has not been much effort on exploring BERT for natural language understanding. In this work, we propose a joint intent classification and slot filling model based on BERT. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on several public benchmark datasets, compared to the attention-based recurrent neural network models and slot-gated models.

北京阿比特科技有限公司