亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work conducts the first analysis on the robustness against adversarial attacks on self-supervised Vision Transformers trained using DINO. First, we evaluate whether features learned through self-supervision are more robust to adversarial attacks than those emerging from supervised learning. Then, we present properties arising for attacks in the latent space. Finally, we evaluate whether three well-known defense strategies can increase adversarial robustness in downstream tasks by only fine-tuning the classification head to provide robustness even in view of limited compute resources. These defense strategies are: Adversarial Training, Ensemble Adversarial Training and Ensemble of Specialized Networks.

相關內容

Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision to improve RE models.

State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is an effective approach to defend against such examples. It is formulated as a min-max problem, searching for the best solution when the training data was corrupted by the worst-case attacks. For linear regression problems, adversarial training can be formulated as a convex problem. We use this reformulation to make two technical contributions: First, we formulate the training problem as an instance of robust regression to reveal its connection to parameter-shrinking methods, specifically that $\ell_\infty$-adversarial training produces sparse solutions. Secondly, we study adversarial training in the overparameterized regime, i.e. when there are more parameters than data. We prove that adversarial training with small disturbances gives the solution with the minimum-norm that interpolates the training data. Ridge regression and lasso approximate such interpolating solutions as their regularization parameter vanishes. By contrast, for adversarial training, the transition into the interpolation regime is abrupt and for non-zero values of disturbance. This result is proved and illustrated with numerical examples.

Deep Learning-based image synthesis techniques have been applied in healthcare research for generating medical images to support open research and augment medical datasets. Training generative adversarial neural networks (GANs) usually require large amounts of training data. Federated learning (FL) provides a way of training a central model using distributed data while keeping raw data locally. However, given that the FL server cannot access the raw data, it is vulnerable to backdoor attacks, an adversarial by poisoning training data. Most backdoor attack strategies focus on classification models and centralized domains. It is still an open question if the existing backdoor attacks can affect GAN training and, if so, how to defend against the attack in the FL setting. In this work, we investigate the overlooked issue of backdoor attacks in federated GANs (FedGANs). The success of this attack is subsequently determined to be the result of some local discriminators overfitting the poisoned data and corrupting the local GAN equilibrium, which then further contaminates other clients when averaging the generator's parameters and yields high generator loss. Therefore, we proposed FedDetect, an efficient and effective way of defending against the backdoor attack in the FL setting, which allows the server to detect the client's adversarial behavior based on their losses and block the malicious clients. Our extensive experiments on two medical datasets with different modalities demonstrate the backdoor attack on FedGANs can result in synthetic images with low fidelity. After detecting and suppressing the detected malicious clients using the proposed defense strategy, we show that FedGANs can synthesize high-quality medical datasets (with labels) for data augmentation to improve classification models' performance.

Gradient inversion attack enables recovery of training samples from model updates in federated learning (FL) and constitutes a serious threat to data privacy. To mitigate this vulnerability, prior work proposed both principled defenses based on differential privacy, as well as heuristic defenses based on gradient compression as countermeasures. These defenses have so far been very effective, in particular those based on gradient compression that allow the model to maintain high accuracy while greatly reducing the attack's effectiveness. In this work, we argue that such findings do not accurately reflect the privacy risk in FL, and show that existing defenses can be broken by a simple adaptive attack that trains a model using auxiliary data to learn how to invert gradients on both vision and language tasks.

As industrial applications are increasingly automated by machine learning models, enforcing personal data ownership and intellectual property rights requires tracing training data back to their rightful owners. Membership inference algorithms approach this problem by using statistical techniques to discern whether a target sample was included in a model's training set. However, existing methods only utilize the unaltered target sample or simple augmentations of the target to compute statistics. Such a sparse sampling of the model's behavior carries little information, leading to poor inference capabilities. In this work, we use adversarial tools to directly optimize for queries that are discriminative and diverse. Our improvements achieve significantly more accurate membership inference than existing methods, especially in offline scenarios and in the low false-positive regime which is critical in legal settings. Code is available at //github.com/YuxinWenRick/canary-in-a-coalmine.

Recently, unsupervised adversarial training (AT) has been extensively studied to attain robustness with the models trained upon unlabeled data. To this end, previous studies have applied existing supervised adversarial training techniques to self-supervised learning (SSL) frameworks. However, all have resorted to untargeted adversarial learning as obtaining targeted adversarial examples is unclear in the SSL setting lacking of label information. In this paper, we propose a novel targeted adversarial training method for the SSL frameworks. Specifically, we propose a target selection algorithm for the adversarial SSL frameworks; it is designed to select the most confusing sample for each given instance based on similarity and entropy, and perturb the given instance toward the selected target sample. Our method significantly enhances the robustness of an SSL model without requiring large batches of images or additional models, unlike existing works aimed at achieving the same goal. Moreover, our method is readily applicable to general SSL frameworks that only uses positive pairs. We validate our method on benchmark datasets, on which it obtains superior robust accuracies, outperforming existing unsupervised adversarial training methods.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

北京阿比特科技有限公司