亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid development of social media provides a hotbed for the dissemination of fake news, which misleads readers and causes negative effects on society. News usually involves texts and images to be more vivid. Consequently, multi-modal fake news detection has received wide attention. Prior efforts primarily conduct multi-modal fusion by simple concatenation or co-attention mechanism, leading to sub-optimal performance. In this paper, we propose a novel mutual learning network based model MMNet, which enhances the multi-modal fusion for fake news detection via mutual learning between text- and vision-centered views towards the same classification objective. Specifically, we design two detection modules respectively based on text- and vision-centered multi-modal fusion features, and enable the mutual learning of the two modules to facilitate the multi-modal fusion, considering the latent consistency between the two modules towards the same training objective. Moreover, we also consider the influence of the image-text matching degree on news authenticity judgement by designing an image-text matching aware co-attention mechanism for multi-modal fusion. Extensive experiments are conducted on three benchmark datasets and the results demonstrate that our proposed MMNet achieves superior performance in fake news detection.

相關內容

With the rapid development of deep generative models (such as Generative Adversarial Networks and Auto-encoders), AI-synthesized images of the human face are now of such high quality that humans can hardly distinguish them from pristine ones. Although existing detection methods have shown high performance in specific evaluation settings, e.g., on images from seen models or on images without real-world post-processings, they tend to suffer serious performance degradation in real-world scenarios where testing images can be generated by more powerful generation models or combined with various post-processing operations. To address this issue, we propose a Global and Local Feature Fusion (GLFF) to learn rich and discriminative representations by combining multi-scale global features from the whole image with refined local features from informative patches for face forgery detection. GLFF fuses information from two branches: the global branch to extract multi-scale semantic features and the local branch to select informative patches for detailed local artifacts extraction. Due to the lack of a face forgery dataset simulating real-world applications for evaluation, we further create a challenging face forgery dataset, named DeepFakeFaceForensics (DF^3), which contains 6 state-of-the-art generation models and a variety of post-processing techniques to approach the real-world scenarios. Experimental results demonstrate the superiority of our method to the state-of-the-art methods on the proposed DF^3 dataset and three other open-source datasets.

Recent advances in fake news detection have exploited the success of large-scale pre-trained language models (PLMs). The predominant state-of-the-art approaches are based on fine-tuning PLMs on labelled fake news datasets. However, large-scale PLMs are generally not trained on structured factual data and hence may not possess priors that are grounded in factually accurate knowledge. The use of existing knowledge bases (KBs) with rich human-curated factual information has thus the potential to make fake news detection more effective and robust. In this paper, we investigate the impact of knowledge integration into PLMs for fake news detection. We study several state-of-the-art approaches for knowledge integration, mostly using Wikidata as KB, on two popular fake news datasets - LIAR, a politics-based dataset, and COVID-19, a dataset of messages posted on social media relating to the COVID-19 pandemic. Our experiments show that knowledge-enhanced models can significantly improve fake news detection on LIAR where the KB is relevant and up-to-date. The mixed results on COVID-19 highlight the reliance on stylistic features and the importance of domain-specific and current KBs.

Indoor 3D object detection is an essential task in single image scene understanding, impacting spatial cognition fundamentally in visual reasoning. Existing works on 3D object detection from a single image either pursue this goal through independent predictions of each object or implicitly reason over all possible objects, failing to harness relational geometric information between objects. To address this problem, we propose a dynamic sparse graph pipeline named Explicit3D based on object geometry and semantics features. Taking the efficiency into consideration, we further define a relatedness score and design a novel dynamic pruning algorithm followed by a cluster sampling method for sparse scene graph generation and updating. Furthermore, our Explicit3D introduces homogeneous matrices and defines new relative loss and corner loss to model the spatial difference between target pairs explicitly. Instead of using ground-truth labels as direct supervision, our relative and corner loss are derived from the homogeneous transformation, which renders the model to learn the geometric consistency between objects. The experimental results on the SUN RGB-D dataset demonstrate that our Explicit3D achieves better performance balance than the-state-of-the-art.

Multi-scale features are essential for dense prediction tasks, including object detection, instance segmentation, and semantic segmentation. Existing state-of-the-art methods usually first extract multi-scale features by a classification backbone and then fuse these features by a lightweight module (e.g. the fusion module in FPN). However, we argue that it may not be sufficient to fuse the multi-scale features through such a paradigm, because the parameters allocated for feature fusion are limited compared with the heavy classification backbone. In order to address this issue, we propose a new architecture named Cascade Fusion Network (CFNet) for dense prediction. Besides the stem and several blocks used to extract initial high-resolution features, we introduce several cascaded stages to generate multi-scale features in CFNet. Each stage includes a sub-backbone for feature extraction and an extremely lightweight transition block for feature integration. This design makes it possible to fuse features more deeply and effectively with a large proportion of parameters of the whole backbone. Extensive experiments on object detection, instance segmentation, and semantic segmentation validated the effectiveness of the proposed CFNet. Codes will be available at //github.com/zhanggang001/CFNet.

Traditional semantic image search methods aim to retrieve images that match the meaning of the text query. However, these methods typically search for objects on the whole image, without considering the localization of objects within the image. This paper presents an extension of existing object detection models for semantic image search that considers the semantic alignment between object proposals and text queries, with a focus on searching for objects within images. The proposed model uses a single feature extractor, a pre-trained Convolutional Neural Network, and a transformer encoder to encode the text query. Proposal-text alignment is performed using contrastive learning, producing a score for each proposal that reflects its semantic alignment with the text query. The Region Proposal Network (RPN) is used to generate object proposals, and the end-to-end training process allows for an efficient and effective solution for semantic image search. The proposed model was trained end-to-end, providing a promising solution for semantic image search that retrieves images that match the meaning of the text query and generates semantically relevant object proposals.

With the pandemic of COVID-19, relevant fake news is spreading all over the sky throughout the social media. Believing in them without discrimination can cause great trouble to people's life. However, universal language models may perform weakly in these fake news detection for lack of large-scale annotated data and sufficient semantic understanding of domain-specific knowledge. While the model trained on corresponding corpora is also mediocre for insufficient learning. In this paper, we propose a novel transformer-based language model fine-tuning approach for these fake news detection. First, the token vocabulary of individual model is expanded for the actual semantics of professional phrases. Second, we adapt the heated-up softmax loss to distinguish the hard-mining samples, which are common for fake news because of the disambiguation of short text. Then, we involve adversarial training to improve the model's robustness. Last, the predicted features extracted by universal language model RoBERTa and domain-specific model CT-BERT are fused by one multiple layer perception to integrate fine-grained and high-level specific representations. Quantitative experimental results evaluated on existing COVID-19 fake news dataset show its superior performances compared to the state-of-the-art methods among various evaluation metrics. Furthermore, the best weighted average F1 score achieves 99.02%.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司