亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Iris Recognition (IR) is one of the market's most reliable and accurate biometric systems. Today, it is challenging to build NIR-capturing devices under the premise of hardware price reduction. Commercial NIR sensors are protected from modification. The process of building a new device is not trivial because it is required to start from scratch with the process of capturing images with quality, calibrating operational distances, and building lightweight software such as eyes/iris detectors and segmentation sub-systems. In light of such challenges, this work aims to develop and implement iris recognition software in an embedding system and calibrate NIR in a contactless binocular setup. We evaluate and contrast speed versus performance obtained with two embedded computers and infrared cameras. Further, a lightweight segmenter sub-system called "Unet_xxs" is proposed, which can be used for iris semantic segmentation under restricted memory resources.

相關內容

Iris數據集是常用的分類實驗數據集,由Fisher, 1936收集整理。Iris也稱鳶尾花卉數據集,是一類多重變量分析的數據集。數據集包含150個數據集,分為3類,每類50個數據,每個數據包含4個屬性。可通過花萼長度,花萼寬度,花瓣長度,花瓣寬度4個屬性預測鳶尾花卉屬于(Setosa,Versicolour,Virginica)三個種類中的哪一類。

The paradigm shift of enabling extensive intercommunication between the Operational Technology (OT) and Information Technology (IT) devices allows vulnerabilities typical to the IT world to propagate to the OT side. Therefore, the security layer offered in the past by air gapping is removed, making security patching for OT devices a hard requirement. Conventional patching involves a device reboot to load the patched code in the main memory, which does not apply to OT devices controlling critical processes due to downtime, necessitating in-memory vulnerability patching. Furthermore, these control binaries are often compiled by in-house proprietary compilers, further hindering the patching process and placing reliance on OT vendors for rapid vulnerability discovery and patch development. The current state-of-the-art hotpatching approaches only focus on firmware and/or RTOS. Therefore, in this work, we develop ICSPatch, a framework to automate control logic vulnerability localization using Data Dependence Graphs (DDGs). With the help of DDGs, ICSPatch pinpoints the vulnerability in the control application. As an independent second step, ICSPatch can non-intrusively hotpatch vulnerabilities in the control application directly in the main memory of Programmable Logic Controllers while maintaining reliable continuous operation. To evaluate our framework, we test ICSPatch on a synthetic dataset of 24 vulnerable control application binaries from diverse critical infrastructure sectors. Results show that ICSPatch could successfully localize all vulnerabilities and generate patches accordingly. Furthermore, the patch added negligible latency increase in the execution cycle while maintaining correctness and protection against the vulnerability.

In the realm of wireless communications in 5G, 6G and beyond, deploying unmanned aerial vehicle (UAV) has been an innovative approach to extend the coverage area due to its easy deployment. Moreover, reconfigurable intelligent surface (RIS) has also emerged as a new paradigm with the goals of enhancing the average sum-rate as well as energy efficiency. By combining these attractive features, an energy-efficient RIS-mounted multiple UAVs (aerial RISs: ARISs) assisted downlink communication system is studied. Due to the obstruction, user equipments (UEs) can have a poor line of sight to communicate with the base station (BS). To solve this, multiple ARISs are implemented to assist the communication between the BS and UEs. Then, the joint optimization problem of deployment of ARIS, ARIS reflective elements on/off states, phase shift, and power control of the multiple ARISs-assisted communication system is formulated. The problem is challenging to solve since it is mixed-integer, non-convex, and NP-hard. To overcome this, it is decomposed into three sub-problems. Afterwards, successive convex approximation (SCA), actor-critic proximal policy optimization (AC-PPO), and whale optimization algorithm (WOA) are employed to solve these sub-problems alternatively. Finally, extensive simulation results have been generated to illustrate the efficacy of our proposed algorithms.

Few-shot object detection (FSOD), which aims at learning a generic detector that can adapt to unseen tasks with scarce training samples, has witnessed consistent improvement recently. However, most existing methods ignore the efficiency issues, e.g., high computational complexity and slow adaptation speed. Notably, efficiency has become an increasingly important evaluation metric for few-shot techniques due to an emerging trend toward embedded AI. To this end, we present an efficient pretrain-transfer framework (PTF) baseline with no computational increment, which achieves comparable results with previous state-of-the-art (SOTA) methods. Upon this baseline, we devise an initializer named knowledge inheritance (KI) to reliably initialize the novel weights for the box classifier, which effectively facilitates the knowledge transfer process and boosts the adaptation speed. Within the KI initializer, we propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights. Finally, our approach not only achieves the SOTA results across three public benchmarks, i.e., PASCAL VOC, COCO and LVIS, but also exhibits high efficiency with 1.8-100x faster adaptation speed against the other methods on COCO/LVIS benchmark during few-shot transfer. To our best knowledge, this is the first work to consider the efficiency problem in FSOD. We hope to motivate a trend toward powerful yet efficient few-shot technique development. The codes are publicly available at //github.com/Ze-Yang/Efficient-FSOD.

Given a piece of text, a video clip and a reference audio, the movie dubbing (also known as visual voice clone V2C) task aims to generate speeches that match the speaker's emotion presented in the video using the desired speaker voice as reference. V2C is more challenging than conventional text-to-speech tasks as it additionally requires the generated speech to exactly match the varying emotions and speaking speed presented in the video. Unlike previous works, we propose a novel movie dubbing architecture to tackle these problems via hierarchical prosody modelling, which bridges the visual information to corresponding speech prosody from three aspects: lip, face, and scene. Specifically, we align lip movement to the speech duration, and convey facial expression to speech energy and pitch via attention mechanism based on valence and arousal representations inspired by recent psychology findings. Moreover, we design an emotion booster to capture the atmosphere from global video scenes. All these embeddings together are used to generate mel-spectrogram and then convert to speech waves via existing vocoder. Extensive experimental results on the Chem and V2C benchmark datasets demonstrate the favorable performance of the proposed method. The source code and trained models will be released to the public.

Given a graph $G=(V,E)$ with arboricity $\alpha$, we study the problem of decomposing the edges of $G$ into $(1+\epsilon)\alpha$ disjoint forests in the distributed LOCAL model. Barenboim and Elkin [PODC `08] gave a LOCAL algorithm that computes a $(2+\epsilon)\alpha$-forest decomposition using $O(\frac{\log n}{\epsilon})$ rounds. Ghaffari and Su [SODA `17] made further progress by computing a $(1+\epsilon) \alpha$-forest decomposition in $O(\frac{\log^3 n}{\epsilon^4})$ rounds when $\epsilon \alpha = \Omega(\sqrt{\alpha \log n})$, i.e. the limit of their algorithm is an $(\alpha+ \Omega(\sqrt{\alpha \log n}))$-forest decomposition. This algorithm, based on a combinatorial construction of Alon, McDiarmid \& Reed [Combinatorica `92], in fact provides a decomposition of the graph into \emph{star-forests}, i.e. each forest is a collection of stars. Our main result in this paper is to reduce the threshold of $\epsilon \alpha$ in $(1+\epsilon)\alpha$-forest decomposition and star-forest decomposition. This further answers the $10^{\text{th}}$ open question from Barenboim and Elkin's "Distributed Graph Algorithms" book. Moreover, it gives the first $(1+\epsilon)\alpha$-orientation algorithms with {\it linear dependencies} on $\epsilon^{-1}$. At a high level, our results for forest-decomposition are based on a combination of network decomposition, load balancing, and a new structural result on local augmenting sequences. Our result for star-forest decomposition uses a more careful probabilistic analysis for the construction of Alon, McDiarmid, \& Reed; the bounds on star-arboricity here were not previously known, even non-constructively.

Missing data can lead to inefficiencies and biases in analyses, in particular when data are missing not at random (MNAR). It is thus vital to understand and correctly identify the missing data mechanism. Recovering missing values through a follow up sample allows researchers to conduct hypothesis tests for MNAR, which are not possible when using only the original incomplete data. Investigating how properties of these tests are affected by the follow up sample design is little explored in the literature. Our results provide comprehensive insight into the properties of one such test, based on the commonly used selection model framework. We determine conditions for recovery samples that allow the test to be applied appropriately and effectively, i.e. with known Type I error rates and optimized with respect to power. We thus provide an integrated framework for testing for the presence of MNAR and designing follow up samples in an efficient cost-effective way. The performance of our methodology is evaluated through simulation studies as well as on a real data sample.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司