The complex challenge of detecting sarcasm in Arabic speech on social media is increased by the language diversity and the nature of sarcastic expressions. There is a significant gap in the capability of existing models to effectively interpret sarcasm in Arabic, which mandates the necessity for more sophisticated and precise detection methods. In this paper, we investigate the impact of a fundamental preprocessing component on sarcasm speech detection. While emojis play a crucial role in mitigating the absence effect of body language and facial expressions in modern communication, their impact on automated text analysis, particularly in sarcasm detection, remains underexplored. We investigate the impact of emoji exclusion from datasets on the performance of sarcasm detection models in social media content for Arabic as a vocabulary-super rich language. This investigation includes the adaptation and enhancement of AraBERT pre-training models, specifically by excluding emojis, to improve sarcasm detection capabilities. We use AraBERT pre-training to refine the specified models, demonstrating that the removal of emojis can significantly boost the accuracy of sarcasm detection. This approach facilitates a more refined interpretation of language, eliminating the potential confusion introduced by non-textual elements. The evaluated AraBERT models, through the focused strategy of emoji removal, adeptly navigate the complexities of Arabic sarcasm. This study establishes new benchmarks in Arabic natural language processing and presents valuable insights for social media platforms.
Fairness is one of the most commonly identified ethical principles in existing AI guidelines, and the development of fair AI-enabled systems is required by new and emerging AI regulation. But most approaches to addressing the fairness of AI-enabled systems are limited in scope in two significant ways: their substantive content focuses on statistical measures of fairness, and they do not emphasize the need to identify and address fairness considerations across the whole AI lifecycle. Our contribution is to present an assurance framework and tool that can enable a practical and transparent method for widening the scope of fairness considerations across the AI lifecycle and move the discussion beyond mere statistical notions of fairness to consider a richer analysis in a practical and context-dependent manner. To illustrate this approach, we first describe and then apply the framework of Trustworthy and Ethical Assurance (TEA) to an AI-enabled clinical diagnostic support system (CDSS) whose purpose is to help clinicians predict the risk of developing hypertension in patients with Type 2 diabetes, a context in which several fairness considerations arise (e.g., discrimination against patient subgroups). This is supplemented by an open-source tool and a fairness considerations map to help facilitate reasoning about the fairness of AI-enabled systems in a participatory way. In short, by using a shared framework for identifying, documenting and justifying fairness considerations, and then using this deliberative exercise to structure an assurance case, research on AI fairness becomes reusable and generalizable for others in the ethical AI community and for sharing best practices for achieving fairness and equity in digital health and healthcare in particular.
Exploring proper way to conduct multi-speech feature fusion for cross-corpus speech emotion recognition is crucial as different speech features could provide complementary cues reflecting human emotion status. While most previous approaches only extract a single speech feature for emotion recognition, existing fusion methods such as concatenation, parallel connection, and splicing ignore heterogeneous patterns in the interaction between features and features, resulting in performance of existing systems. In this paper, we propose a novel graph-based fusion method to explicitly model the relationships between every pair of speech features. Specifically, we propose a multi-dimensional edge features learning strategy called Graph-based multi-Feature fusion method for speech emotion recognition. It represents each speech feature as a node and learns multi-dimensional edge features to explicitly describe the relationship between each feature-feature pair in the context of emotion recognition. This way, the learned multi-dimensional edge features encode speech feature-level information from both the vertex and edge dimensions. Our Approach consists of three modules: an Audio Feature Generation(AFG)module, an Audio-Feature Multi-dimensional Edge Feature(AMEF) module and a Speech Emotion Recognition (SER) module. The proposed methodology yielded satisfactory outcomes on the SEWA dataset. Furthermore, the method demonstrated enhanced performance compared to the baseline in the AVEC 2019 Workshop and Challenge. We used data from two cultures as our training and validation sets: two cultures containing German and Hungarian on the SEWA dataset, the CCC scores for German are improved by 17.28% for arousal and 7.93% for liking. The outcomes of our methodology demonstrate a 13% improvement over alternative fusion techniques, including those employing one dimensional edge-based feature fusion approach.
Optimal experimental design (OED) aims to choose the observations in an experiment to be as informative as possible, according to certain statistical criteria. In the linear case (when the observations depend linearly on the unknown parameters), it seeks the optimal weights over rows of the design matrix A under certain criteria. Classical OED assumes a discrete design space and thus a design matrix with finite dimensions. In many practical situations, however, the design space is continuous-valued, so that the OED problem is one of optimizing over a continuous-valued design space. The objective becomes a functional over the probability measure, instead of over a finite dimensional vector. This change of perspective requires a new set of techniques that can handle optimizing over probability measures, and Wasserstein gradient flow becomes a natural candidate. Both the first-order criticality and the convexity properties of the OED objective are presented. Computationally Monte Carlo particle simulation is deployed to formulate the main algorithm. This algorithm is applied to two elliptic inverse problems.
Social media platforms, particularly Telegram, play a pivotal role in shaping public perceptions and opinions on global and national issues. Unlike traditional news media, Telegram allows for the proliferation of user-generated content with minimal oversight, making it a significant venue for the spread of controversial and misinformative content. During the COVID-19 pandemic, Telegram's popularity surged in Singapore, a country with one of the highest rates of social media use globally. We leverage Singapore-based Telegram data to analyze information flows within groups focused on COVID-19 and climate change. Using k-means clustering, we identified distinct user archetypes, including Skeptic, Engaged Advocate, Observer, and Analyst, each contributing uniquely to the discourse. We developed a model to classify users into these clusters (Precision: Climate change: 0.99; COVID-19: 0.95). By identifying these user archetypes and examining their contributions to information dissemination, we sought to uncover patterns to inform effective strategies for combating misinformation and enhancing public discourse on pressing global issues.
We consider a convex constrained Gaussian sequence model and characterize necessary and sufficient conditions for the least squares estimator (LSE) to be optimal in a minimax sense. For a closed convex set $K\subset \mathbb{R}^n$ we observe $Y=\mu+\xi$ for $\xi\sim N(0,\sigma^2\mathbb{I}_n)$ and $\mu\in K$ and aim to estimate $\mu$. We characterize the worst case risk of the LSE in multiple ways by analyzing the behavior of the local Gaussian width on $K$. We demonstrate that optimality is equivalent to a Lipschitz property of the local Gaussian width mapping. We also provide theoretical algorithms that search for the worst case risk. We then provide examples showing optimality or suboptimality of the LSE on various sets, including $\ell_p$ balls for $p\in[1,2]$, pyramids, solids of revolution, and multivariate isotonic regression, among others.
Lattice structures have been widely used in applications due to their superior mechanical properties. To fabricate such structures, a geometric processing step called triangulation is often employed to transform them into the STL format before sending them to 3D printers. Because lattice structures tend to have high geometric complexity, this step usually generates a large amount of triangles, a memory and compute-intensive task. This problem manifests itself clearly through large-scale lattice structures that have millions or billions of struts. To address this problem, this paper proposes to transform a lattice structure into an intermediate model called meta-mesh before undergoing real triangulation. Compared to triangular meshes, meta-meshes are very lightweight and much less compute-demanding. The meta-mesh can also work as a base mesh reusable for conveniently and efficiently triangulating lattice structures with arbitrary resolutions. A CPU+GPU asynchronous meta-meshing pipeline has been developed to efficiently generate meta-meshes from lattice structures. It shifts from the thread-centric GPU algorithm design paradigm commonly used in CAD to the recent warp-centric design paradigm to achieve high performance. This is achieved by a new data compression method, a GPU cache-aware data structure, and a workload-balanced scheduling method that can significantly reduce memory divergence and branch divergence. Experimenting with various billion-scale lattice structures, the proposed method is seen to be two orders of magnitude faster than previously achievable.
To date, most investigations on surprisal and entropy effects in reading have been conducted on the group level, disregarding individual differences. In this work, we revisit the predictive power of surprisal and entropy measures estimated from a range of language models (LMs) on data of human reading times as a measure of processing effort by incorporating information of language users' cognitive capacities. To do so, we assess the predictive power of surprisal and entropy estimated from generative LMs on reading data obtained from individuals who also completed a wide range of psychometric tests. Specifically, we investigate if modulating surprisal and entropy relative to cognitive scores increases prediction accuracy of reading times, and we examine whether LMs exhibit systematic biases in the prediction of reading times for cognitively high- or low-performing groups, revealing what type of psycholinguistic subject a given LM emulates. Our study finds that in most cases, incorporating cognitive capacities increases predictive power of surprisal and entropy on reading times, and that generally, high performance in the psychometric tests is associated with lower sensitivity to predictability effects. Finally, our results suggest that the analyzed LMs emulate readers with lower verbal intelligence, suggesting that for a given target group (i.e., individuals with high verbal intelligence), these LMs provide less accurate predictability estimates.
In 1934, the American statistician Samuel S. Wilks derived remarkable formulas for the joint moments of embedded principal minors of sample covariance matrices in multivariate Gaussian populations, and he used them to compute the moments of sample statistics in various applications related to multivariate linear regression. These important but little-known moment results were extended in 1963 by the Australian statistician A. Graham Constantine using Bartlett's decomposition. In this note, a new proof of Wilks' results is derived using the concept of iterated Schur complements, thereby bypassing Bartlett's decomposition. Furthermore, Wilks' open problem of evaluating joint moments of disjoint principal minors of Wishart random matrices is related to the Gaussian product inequality conjecture.
The decisions of individuals and organizations are often suboptimal because normative decision strategies are too demanding in the real world. Recent work suggests that some errors can be prevented by leveraging artificial intelligence to discover and teach prescriptive decision strategies that take people's constraints into account. So far, this line of research has been limited to simplified decision problems. This article is the first to extend this approach to a real-world decision problem, namely project selection. We develop a computational method (MGPS) that automatically discovers project selection strategies that are optimized for real people and develop an intelligent tutor that teaches the discovered strategies. We evaluated MGPS on a computational benchmark and tested the intelligent tutor in a training experiment with two control conditions. MGPS outperformed a state-of-the-art method and was more computationally efficient. Moreover, the intelligent tutor significantly improved people's decision strategies. Our results indicate that our method can improve human decision-making in naturalistic settings similar to real-world project selection, a first step towards applying strategy discovery to the real world.
The goal of this paper is to provide a simple approach to perform local sensitivity analysis using Physics-informed neural networks (PINN). The main idea lies in adding a new term in the loss function that regularizes the solution in a small neighborhood near the nominal value of the parameter of interest. The added term represents the derivative of the loss function with respect to the parameter of interest. The result of this modification is a solution to the problem along with the derivative of the solution with respect to the parameter of interest (the sensitivity). We call the new technique SA-PNN which stands for sensitivity analysis in PINN. The effectiveness of the technique is shown using four examples: the first one is a simple one-dimensional advection-diffusion problem to show the methodology, the second is a two-dimensional Poisson's problem with nine parameters of interest, and the third and fourth examples are one and two-dimensional transient two-phase flow in porous media problem.