亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A dynamical system produces a dependent multivariate sequence called dynamical time series, developed with an evolution function. As variables in the dynamical time series at the current time-point usually depend on the whole variables in the previous time-point, existing studies forecast the variables at the future time-point by estimating the evolution function. However, some variables in the dynamical time-series are missing in some practical situations. In this study, we propose an autoregressive with slack time series (ARS) model. ARS model involves the simultaneous estimation of the evolution function and the underlying missing variables as a slack time series, with the aid of the time-invariance and linearity of the dynamical system. This study empirically demonstrates the effectiveness of the proposed ARS model.

相關內容

Purpose: To develop an open-source, fully-automatic deep learning algorithm, DeepGPET, for choroid region segmentation in optical coherence tomography (OCT) data. Methods: We used a dataset of 715 OCT B-scans (82 subjects, 115 eyes) from 3 clinical studies related to systemic disease. Ground truth segmentations were generated using a clinically validated, semi-automatic choroid segmentation method, Gaussian Process Edge Tracing (GPET). We finetuned a UNet with MobileNetV3 backbone pre-trained on ImageNet. Standard segmentation agreement metrics, as well as derived measures of choroidal thickness and area, were used to evaluate DeepGPET, alongside qualitative evaluation from a clinical ophthalmologist. Results: DeepGPET achieves excellent agreement with GPET on data from 3 clinical studies (AUC=0.9994, Dice=0.9664; Pearson correlation of 0.8908 for choroidal thickness and 0.9082 for choroidal area), while reducing the mean processing time per image on a standard laptop CPU from 34.49s ($\pm$15.09) using GPET to 1.25s ($\pm$0.10) using DeepGPET. Both methods performed similarly according to a clinical ophthalmologist, who qualitatively judged a subset of segmentations by GPET and DeepGPET, based on smoothness and accuracy of segmentations. Conclusions :DeepGPET, a fully-automatic, open-source algorithm for choroidal segmentation, will enable researchers to efficiently extract choroidal measurements, even for large datasets. As no manual interventions are required, DeepGPET is less subjective than semi-automatic methods and could be deployed in clinical practice without necessitating a trained operator. DeepGPET addresses the lack of open-source, fully-automatic and clinically relevant choroid segmentation algorithms, and its subsequent public release will facilitate future choroidal research both in ophthalmology and wider systemic health.

Stochastic multi-scale modeling and simulation for nonlinear thermo-mechanical problems of composite materials with complicated random microstructures remains a challenging issue. In this paper, we develop a novel statistical higher-order multi-scale (SHOMS) method for nonlinear thermo-mechanical simulation of random composite materials, which is designed to overcome limitations of prohibitive computation involving the macro-scale and micro-scale. By virtue of statistical multi-scale asymptotic analysis and Taylor series method, the SHOMS computational model is rigorously derived for accurately analyzing nonlinear thermo-mechanical responses of random composite materials both in the macro-scale and micro-scale. Moreover, the local error analysis of SHOMS solutions in the point-wise sense clearly illustrates the crucial indispensability of establishing the higher-order asymptotic corrected terms in SHOMS computational model for keeping the conservation of local energy and momentum. Then, the corresponding space-time multi-scale numerical algorithm with off-line and on-line stages is designed to efficiently simulate nonlinear thermo-mechanical behaviors of random composite materials. Finally, extensive numerical experiments are presented to gauge the efficiency and accuracy of the proposed SHOMS approach.

We review how to simulate continuous determinantal point processes (DPPs) and improve the current simulation algorithms in several important special cases as well as detail how certain types of conditional simulation can be carried out. Importantly we show how to speed up the simulation of the widely used Fourier based projection DPPs, which arise as approximations of more general DPPs. The algorithms are implemented and published as open source software.

We develop an NLP-based procedure for detecting systematic nonmeritorious consumer complaints, simply called systematic anomalies, among complaint narratives. While classification algorithms are used to detect pronounced anomalies, in the case of smaller and frequent systematic anomalies, the algorithms may falter due to a variety of reasons, including technical ones as well as natural limitations of human analysts. Therefore, as the next step after classification, we convert the complaint narratives into quantitative data, which are then analyzed using an algorithm for detecting systematic anomalies. We illustrate the entire procedure using complaint narratives from the Consumer Complaint Database of the Consumer Financial Protection Bureau.

Although compartmental dynamical systems are used in many different areas of science, model selection based on the maximum entropy principle (MaxEnt) is challenging because of the lack of methods for quantifying the entropy for this type of systems. Here, we take advantage of the interpretation of compartmental systems as continuous-time Markov chains to obtain entropy measures that quantify model information content. In particular, we quantify the uncertainty of a single particle's path as it travels through the system as described by path entropy and entropy rates. Path entropy measures the uncertainty of the entire path of a traveling particle from its entry into the system until its exit, whereas entropy rates measure the average uncertainty of the instantaneous future of a particle while it is in the system. We derive explicit formulas for these two types of entropy for compartmental systems in equilibrium based on Shannon information entropy and show how they can be used to solve equifinality problems in the process of model selection by means of MaxEnt.

The distributed task allocation problem, as one of the most interesting distributed optimization challenges, has received considerable research attention recently. Previous works mainly focused on the task allocation problem in a population of individuals, where there are no constraints for affording task amounts. The latter condition, however, cannot always be hold. In this paper, we study the task allocation problem with constraints of task allocation in a game-theoretical framework. We assume that each individual can afford different amounts of task and the cost function is convex. To investigate the problem in the framework of population games, we construct a potential game and calculate the fitness function for each individual. We prove that when the Nash equilibrium point in the potential game is in the feasible solutions for the limited task allocation problem, the Nash equilibrium point is the unique globally optimal solution. Otherwise, we also derive analytically the unique globally optimal solution. In addition, in order to confirm our theoretical results, we consider the exponential and quadratic forms of cost function for each agent. Two algorithms with the mentioned representative cost functions are proposed to numerically seek the optimal solution to the limited task problems. We further perform Monte Carlo simulations which provide agreeing results with our analytical calculations.

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.

This paper develops power series expansions of a general class of moment functions, including transition densities and option prices, of continuous-time Markov processes, including jump--diffusions. The proposed expansions extend the ones in Kristensen and Mele (2011) to cover general Markov processes. We demonstrate that the class of expansions nests the transition density and option price expansions developed in Yang, Chen, and Wan (2019) and Wan and Yang (2021) as special cases, thereby connecting seemingly different ideas in a unified framework. We show how the general expansion can be implemented for fully general jump--diffusion models. We provide a new theory for the validity of the expansions which shows that series expansions are not guaranteed to converge as more terms are added in general. Thus, these methods should be used with caution. At the same time, the numerical studies in this paper demonstrate good performance of the proposed implementation in practice when a small number of terms are included.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司