亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although language models (LMs) have boosted the performance of Question Answering, they still need plenty of data. Data annotation, in contrast, is a time-consuming process. This especially applies to Question Answering, where possibly large documents have to be parsed and annotated with questions and their corresponding answers. Furthermore, Question Answering models often only work well for the domain they were trained on. Since annotation is costly, we argue that domain-agnostic knowledge from LMs, such as linguistic understanding, is sufficient to create a well-curated dataset. With this motivation, we show that using large language models can improve Question Answering performance on various datasets in the few-shot setting compared to state-of-the-art approaches. For this, we perform data generation leveraging the Prompting framework, suggesting that language models contain valuable task-agnostic knowledge that can be used beyond the common pre-training/fine-tuning scheme. As a result, we consistently outperform previous approaches on few-shot Question Answering.

相關內容

自動問(wen)答(da)(Question Answering, QA)是(shi)指利(li)用計算機自動回答(da)用戶(hu)所提出的(de)(de)(de)問(wen)題以滿足用戶(hu)知識(shi)需求(qiu)的(de)(de)(de)任(ren)務(wu)。不同于(yu)現有搜索引擎,問(wen)答(da)系(xi)統是(shi)信息(xi)服務(wu)的(de)(de)(de)一種高級形式,系(xi)統返回用戶(hu)的(de)(de)(de)不再是(shi)基于(yu)關(guan)鍵詞(ci)匹配排(pai)序的(de)(de)(de)文檔列表,而是(shi)精準(zhun)的(de)(de)(de)自然語(yu)言答(da)案。近(jin)年來,隨著人工(gong)智(zhi)能的(de)(de)(de)飛速發展,自動問(wen)答(da)已(yi)經成為倍受關(guan)注且發展前(qian)景(jing)廣泛的(de)(de)(de)研究方(fang)向。

知識薈萃

精品入門和(he)進(jin)階(jie)教程、論文和(he)代碼整(zheng)理(li)等

更多

查看相關VIP內容、論文(wen)、資(zi)訊等

Multi-Hop Question Answering (MHQA) tasks present a significant challenge for large language models (LLMs) due to the intensive knowledge required. Current solutions, like Retrieval-Augmented Generation, typically retrieve potential documents from an external corpus to read an answer. However, the performance of this retrieve-then-read paradigm is constrained by the retriever and the inevitable noise in the retrieved documents. To mitigate these challenges, we introduce a novel generate-then-ground (GenGround) framework, synergizing the parametric knowledge of LLMs and external documents to solve a multi-hop question. GenGround empowers LLMs to alternate two phases until the final answer is derived: (1) formulate a simpler, single-hop question and directly generate the answer; (2) ground the question-answer pair in retrieved documents, amending any wrong predictions in the answer. We also propose an instructional grounding distillation method to generalize our method into smaller models. Extensive experiments conducted on four datasets illustrate the superiority of our method.

Chain-of-Thought (CoT) holds a significant place in augmenting the reasoning performance for large language models (LLMs). While some studies focus on improving CoT accuracy through methods like retrieval enhancement, yet a rigorous explanation for why CoT achieves such success remains unclear. In this paper, we analyze CoT methods under two different settings by asking the following questions: (1) For zero-shot CoT, why does prompting the model with "let's think step by step" significantly impact its outputs? (2) For few-shot CoT, why does providing examples before questioning the model could substantially improve its reasoning ability? To answer these questions, we conduct a top-down explainable analysis from the Hopfieldian view and propose a Read-and-Control approach for controlling the accuracy of CoT. Through extensive experiments on seven datasets for three different tasks, we demonstrate that our framework can decipher the inner workings of CoT, provide reasoning error localization, and control to come up with the correct reasoning path.

Reference-based metrics such as BLEU and BERTScore are widely used to evaluate question generation (QG). In this study, on QG benchmarks such as SQuAD and HotpotQA, we find that using human-written references cannot guarantee the effectiveness of the reference-based metrics. Most QG benchmarks have only one reference; we replicated the annotation process and collect another reference. A good metric was expected to grade a human-validated question no worse than generated questions. However, the results of reference-based metrics on our newly collected reference disproved the metrics themselves. We propose a reference-free metric consisted of multi-dimensional criteria such as naturalness, answerability, and complexity, utilizing large language models. These criteria are not constrained to the syntactic or semantic of a single reference question, and the metric does not require a diverse set of references. Experiments reveal that our metric accurately distinguishes between high-quality questions and flawed ones, and achieves state-of-the-art alignment with human judgment.

Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers, vocabulary, and pre-training data, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, the majority of previous work has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion for LLMs in low-resource settings (i.e. languages and compute) has yet to be explored. In this paper, we investigate sample-efficient adaptation strategies from different angles, including target vocabulary size and initialization methods, and the amount of target data available for adaptation. Extensive experiments across typologically diverse languages, tasks and models show that simpler heuristic-based embedding initialization is more efficient and robust to changes in target vocabulary size and adaptation data in low-resource settings, outperforming a popular random initialization and a more sophisticated state-of-the-art approach that relies on external data and model.

Context: The rapid evolution of Large Language Models (LLMs) has sparked significant interest in leveraging their capabilities for automating code review processes. Prior studies often focus on developing LLMs for code review automation, yet require expensive resources, which is infeasible for organizations with limited budgets and resources. Thus, fine-tuning and prompt engineering are the two common approaches to leveraging LLMs for code review automation. Objective: We aim to investigate the performance of LLMs-based code review automation based on two contexts, i.e., when LLMs are leveraged by fine-tuning and prompting. Fine-tuning involves training the model on a specific code review dataset, while prompting involves providing explicit instructions to guide the model's generation process without requiring a specific code review dataset. Method: We leverage model fine-tuning and inference techniques (i.e., zero-shot learning, few-shot learning and persona) on LLMs-based code review automation. In total, we investigate 12 variations of two LLMs-based code review automation (i.e., GPT- 3.5 and Magicoder), and compare them with the Guo et al.'s approach and three existing code review automation approaches. Results: The fine-tuning of GPT 3.5 with zero-shot learning helps GPT-3.5 to achieve 73.17% -74.23% higher EM than the Guo et al.'s approach. In addition, when GPT-3.5 is not fine-tuned, GPT-3.5 with few-shot learning achieves 46.38% - 659.09% higher EM than GPT-3.5 with zero-shot learning. Conclusions: Based on our results, we recommend that (1) LLMs for code review automation should be fine-tuned to achieve the highest performance; and (2) when data is not sufficient for model fine-tuning (e.g., a cold-start problem), few-shot learning without a persona should be used for LLMs for code review automation.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司