亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a novel framework that leverages large language models (LLMs) to automate curriculum design, thereby enhancing the application of reinforcement learning (RL) in mobile networks. As mobile networks evolve towards the 6G era, managing their increasing complexity and dynamic nature poses significant challenges. Conventional RL approaches often suffer from slow convergence and poor generalization due to conflicting objectives and the large state and action spaces associated with mobile networks. To address these shortcomings, we introduce curriculum learning, a method that systematically exposes the RL agent to progressively challenging tasks, improving convergence and generalization. However, curriculum design typically requires extensive domain knowledge and manual human effort. Our framework mitigates this by utilizing the generative capabilities of LLMs to automate the curriculum design process, significantly reducing human effort while improving the RL agent's convergence and performance. We deploy our approach within a simulated mobile network environment and demonstrate improved RL convergence rates, generalization to unseen scenarios, and overall performance enhancements. As a case study, we consider autonomous coordination and user association in mobile networks. Our obtained results highlight the potential of combining LLM-based curriculum generation with RL for managing next-generation wireless networks, marking a significant step towards fully autonomous network operations.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

This paper introduces BI-Directional DEliberation Reasoning (BIDDER), a novel reasoning approach to enhance the decision rationality of language models. Traditional reasoning methods typically rely on historical information and employ uni-directional (left-to-right) reasoning strategy. This lack of bi-directional deliberation reasoning results in limited awareness of potential future outcomes and insufficient integration of historical context, leading to suboptimal decisions. BIDDER addresses this gap by incorporating principles of rational decision-making, specifically managing uncertainty and predicting expected utility. Our approach involves three key processes: Inferring hidden states to represent uncertain information in the decision-making process from historical data; Using these hidden states to predict future potential states and potential outcomes; Integrating historical information (past contexts) and long-term outcomes (future contexts) to inform reasoning. By leveraging bi-directional reasoning, BIDDER ensures thorough exploration of both past and future contexts, leading to more informed and rational decisions. We tested BIDDER's effectiveness in two well-defined scenarios: Poker (Limit Texas Hold'em) and Negotiation. Our experiments demonstrate that BIDDER significantly improves the decision-making capabilities of LLMs and LLM agents.

To facilitate the research on large language models (LLMs), this paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of LLMs. This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency. With our library, users can easily reproduce existing methods, train new models, and conduct comprehensive performance comparisons. To rigorously test LLMBox, we conduct extensive experiments in a diverse coverage of evaluation settings, and experimental results demonstrate the effectiveness and efficiency of our library in supporting various implementations related to LLMs. The detailed introduction and usage guidance can be found at //github.com/RUCAIBox/LLMBox.

Traffic prediction, an essential component for intelligent transportation systems, endeavours to use historical data to foresee future traffic features at specific locations. Although existing traffic prediction models often emphasize developing complex neural network structures, their accuracy has not improved. Recently, large language models have shown outstanding capabilities in time series analysis. Differing from existing models, LLMs progress mainly through parameter expansion and extensive pretraining while maintaining their fundamental structures. Motivated by these developments, we propose a Spatial-Temporal Large Language Model (ST-LLM) for traffic prediction. In the ST-LLM, we define timesteps at each location as tokens and design a spatial-temporal embedding to learn the spatial location and global temporal patterns of these tokens. Additionally, we integrate these embeddings by a fusion convolution to each token for a unified spatial-temporal representation. Furthermore, we innovate a partially frozen attention strategy to adapt the LLM to capture global spatial-temporal dependencies for traffic prediction. Comprehensive experiments on real traffic datasets offer evidence that ST-LLM is a powerful spatial-temporal learner that outperforms state-of-the-art models. Notably, the ST-LLM also exhibits robust performance in both few-shot and zero-shot prediction scenarios. The code is publicly available at //github.com/ChenxiLiu-HNU/ST-LLM.

In this paper, we propose Conceptual Codebook Learning (CoCoLe), a novel fine-tuning method for vision-language models (VLMs) to address the challenge of improving the generalization capability of VLMs while fine-tuning them on downstream tasks in a few-shot setting. We recognize that visual concepts, such as textures, shapes, and colors are naturally transferable across domains and play a crucial role in generalization tasks. Motivated by this interesting finding, we learn a conceptual codebook consisting of visual concepts as keys and conceptual prompts as values, which serves as a link between the image encoder's outputs and the text encoder's inputs. Specifically, for a given image, we leverage the codebook to identify the most relevant conceptual prompts associated with the class embeddings to perform the classification. Additionally, we incorporate a handcrafted concept cache as a regularization to alleviate the overfitting issues in low-shot scenarios. We observe that this conceptual codebook learning method is able to achieve enhanced alignment between visual and linguistic modalities. Extensive experimental results demonstrate that our CoCoLe method remarkably outperforms the existing state-of-the-art methods across various evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization tasks. Detailed ablation studies further confirm the efficacy of each component in CoCoLe.

This paper introduces CocoNut-Humoresque, an open-source large-scale speech likability corpus that includes speech segments and their per-listener likability scores. Evaluating voice likability is essential to designing preferable voices for speech systems, such as dialogue or announcement systems. In this study, we let 885 listeners rate 1800 speech segments of a wide range of speakers regarding their likability. When constructing the corpus, we also collected the multiple speaker attributes: genders, ages, and favorite YouTube videos. Therefore, the corpus enables the large-scale statistical analysis of voice likability regarding both speaker and listener factors. This paper describes the construction methodology and preliminary data analysis to reveal the gender and age biases in voice likability. In addition, the relationship between the likability and two acoustic features, the fundamental frequencies and the x-vectors of given utterances, is also investigated.

This paper introduces the concept of Language-Guided World Models (LWMs) -- probabilistic models that can simulate environments by reading texts. Agents equipped with these models provide humans with more extensive and efficient control, allowing them to simultaneously alter agent behaviors in multiple tasks via natural verbal communication. In this work, we take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions. We design a challenging world modeling benchmark based on the game of MESSENGER (Hanjie et al., 2021), featuring evaluation settings that require varying degrees of compositional generalization. Our experiments reveal the lack of generalizability of the state-of-the-art Transformer model, as it offers marginal improvements in simulation quality over a no-text baseline. We devise a more robust model by fusing the Transformer with the EMMA attention mechanism (Hanjie et al., 2021). Our model substantially outperforms the Transformer and approaches the performance of a model with an oracle semantic parsing and grounding capability. To demonstrate the practicality of this model in improving AI safety and transparency, we simulate a scenario in which the model enables an agent to present plans to a human before execution, and to revise plans based on their language feedback.

This paper presents a novel approach to aligning large language models (LLMs) with individual human preferences, sometimes referred to as Reinforcement Learning from \textit{Personalized} Human Feedback (RLPHF). Given stated preferences along multiple dimensions, such as helpfulness, conciseness, or humor, the goal is to create an LLM without re-training that best adheres to this specification. Starting from specialized expert LLMs, each trained for one such particular preference dimension, we propose a black-box method that merges their outputs on a per-token level. We train a lightweight Preference Control Model (PCM) that dynamically translates the preference description and current context into next-token prediction weights. By combining the expert models' outputs at the token level, our approach dynamically generates text that optimizes the given preference. Empirical tests show that our method matches or surpasses existing preference merging techniques, providing a scalable, efficient alternative to fine-tuning LLMs for individual personalization.

In this paper, we explore a novel framework, EGIInet (Explicitly Guided Information Interaction Network), a model for View-guided Point cloud Completion (ViPC) task, which aims to restore a complete point cloud from a partial one with a single view image. In comparison with previous methods that relied on the global semantics of input images, EGIInet efficiently combines the information from two modalities by leveraging the geometric nature of the completion task. Specifically, we propose an explicitly guided information interaction strategy supported by modal alignment for point cloud completion. First, in contrast to previous methods which simply use 2D and 3D backbones to encode features respectively, we unified the encoding process to promote modal alignment. Second, we propose a novel explicitly guided information interaction strategy that could help the network identify critical information within images, thus achieving better guidance for completion. Extensive experiments demonstrate the effectiveness of our framework, and we achieved a new state-of-the-art (+16% CD over XMFnet) in benchmark datasets despite using fewer parameters than the previous methods. The pre-trained model and code and are available at //github.com/WHU-USI3DV/EGIInet.

This paper introduces a tool for verifying Python programs, which, using type annotation and front-end processing, can harness the capabilities of a bounded model-checking (BMC) pipeline. It transforms an input program into an abstract syntax tree to infer and add type information. Then, it translates Python expressions and statements into an intermediate representation. Finally, it converts this description into formulae evaluated with satisfiability modulo theories (SMT) solvers. The proposed approach was realized with the efficient SMT-based bounded model checker (ESBMC), which resulted in a tool called ESBMC-Python, the first BMC-based Python-code verifier. Experimental results, with a test suite specifically developed for this purpose, showed its effectiveness, where successful and failed tests were correctly evaluated. Moreover, it found a real problem in the Ethereum Consensus Specification.

In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The method is a variant of the Deterministic Information Bottleneck algorithm which optimally compresses the data while retaining relevant information about the underlying structure. We compare the performance of the proposed method to that of three well-established clustering methods (KAMILA, K-Prototypes, and Partitioning Around Medoids with Gower's dissimilarity) on simulated and real-world datasets. The results demonstrate that the proposed approach represents a competitive alternative to conventional clustering techniques under specific conditions.

北京阿比特科技有限公司