Large Language Models (LLMs) have shown impressive abilities in code generation, but they may generate erroneous programs. Reading a program takes ten times longer than writing it. Showing these erroneous programs to developers will waste developers' energies and introduce security risks to software. To address the above limitations, we propose HonestCoder, a novel LLM-based code generation approach. HonestCoder selectively shows the generated programs to developers based on LLMs' confidence. The confidence provides valuable insights into the correctness of generated programs. To achieve this goal, we propose a novel approach to estimate LLMs' confidence in code generation. It estimates confidence by measuring the multi-modal similarity between LLMs-generated programs. We collect and release a multilingual benchmark named TruthCodeBench, which consists of 2,265 samples and covers two popular programming languages (i.e., Python and Java). We apply HonestCoder to four popular LLMs (e.g., DeepSeek-Coder and Code Llama) and evaluate it on TruthCodeBench. Based on the experiments, we obtain the following insights. (1) HonestCoder can effectively estimate LLMs' confidence and accurately determine the correctness of generated programs. For example, HonestCoder outperforms the state-of-the-art baseline by 27.79% in AUROC and 63.74% in AUCPR. (2) HonestCoder can decrease the number of erroneous programs shown to developers. Compared to eight baselines, it can show more correct programs and fewer erroneous programs to developers. (3) Compared to showing code indiscriminately, HonestCoder only adds slight time overhead (approximately 0.4 seconds per requirement). (4) We discuss future directions to facilitate the application of LLMs in software development. We hope this work can motivate broad discussions about measuring the reliability of LLMs' outputs in performing code-related tasks.
Large Language Models (LLMs) have received considerable interest in wide applications lately. During pre-training via massive datasets, such a model implicitly memorizes the factual knowledge of trained datasets in its hidden parameters. However, knowledge held implicitly in parameters often makes its use by downstream applications ineffective due to the lack of common-sense reasoning. In this article, we introduce a general framework that permits to build knowledge bases with an aid of LLMs, tailored for processing Web news. The framework applies a rule-based News Information Extractor (NewsIE) to news items for extracting their relational tuples, referred to as knowledge bases, which are then graph-convoluted with the implicit knowledge facts of news items obtained by LLMs, for their classification. It involves two lightweight components: 1) NewsIE: for extracting the structural information of every news item, in the form of relational tuples; 2) BERTGraph: for graph convoluting the implicit knowledge facts with relational tuples extracted by NewsIE. We have evaluated our framework under different news-related datasets for news category classification, with promising experimental results.
Graph Neural Networks (GNNs) extend convolutional neural networks to operate on graphs. Despite their impressive performances in various graph learning tasks, the theoretical understanding of their generalization capability is still lacking. Previous GNN generalization bounds ignore the underlying graph structures, often leading to bounds that increase with the number of nodes -- a behavior contrary to the one experienced in practice. In this paper, we take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain. As demonstrated empirically, we prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions. Notably, our theory explains both node-level and graph-level tasks. Our result has two implications: i) guaranteeing the generalization of GNNs to unseen data over manifolds; ii) providing insights into the practical design of GNNs, i.e., restrictions on the discriminability of GNNs are necessary to obtain a better generalization performance. We demonstrate our generalization bounds of GNNs using synthetic and multiple real-world datasets.
Recent advances in Large Language Models (LLMs) have revolutionized code generation, leading to widespread adoption of AI coding tools by developers. However, LLMs can generate license-protected code without providing the necessary license information, leading to potential intellectual property violations during software production. This paper addresses the critical, yet underexplored, issue of license compliance in LLM-generated code by establishing a benchmark to evaluate the ability of LLMs to provide accurate license information for their generated code. To establish this benchmark, we conduct an empirical study to identify a reasonable standard for "striking similarity" that excludes the possibility of independent creation, indicating a copy relationship between the LLM output and certain open-source code. Based on this standard, we propose LiCoEval, to evaluate the license compliance capabilities of LLMs, i.e., the ability to provide accurate license or copyright information when they generate code with striking similarity to already existing copyrighted code. Using LiCoEval, we evaluate 14 popular LLMs, finding that even top-performing LLMs produce a non-negligible proportion (0.88% to 2.01%) of code strikingly similar to existing open-source implementations. Notably, most LLMs fail to provide accurate license information, particularly for code under copyleft licenses. These findings underscore the urgent need to enhance LLM compliance capabilities in code generation tasks. Our study provides a foundation for future research and development to improve license compliance in AI-assisted software development, contributing to both the protection of open-source software copyrights and the mitigation of legal risks for LLM users.
Touchscreens are becoming increasingly widespread in educational games, enhancing the quality of learner experience. Traditional metrics are often used to evaluate various input modalities, including hand and stylus. However, there exists a gap in understanding the cognitive impacts of these modalities during educational gameplay, which can be addressed through brain signal analysis to gain deeper insights into the underlying cognitive function and necessary brain resources for each condition. This facilitates a more precise comparison between conditions. In this study, we compared the brain signal and user experience of using hands and stylus on touchscreens while playing an educational game by analyzing hemodynamic response and self-reported measures. Participants engaged in a Unity-based educational quiz game using both hand and stylus on a touchscreen in a counterbalanced within-subject design. Oxygenated and deoxygenated hemoglobin data were collected using fNIRS, alongside quiz performance scores and standardized and customized user experience questionnaire ratings. Our findings show almost the same performance level with both input modalities, however, the hand requires less oxygen flow which suggests a lower cognitive effort than using a stylus while playing the educational game. Although the result shows that the stylus condition required more neural involvement than the hand condition, there is no significant difference between the use of both input modalities. However, there is a statistically significant difference in self-reported measures that support the findings mentioned above, favoring the hand that enhances understanding of modality effects in interactive educational environments.
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks, known as Code LLMs, particularly in code generation that generates source code with LLM from natural language descriptions. This burgeoning field has captured significant interest from both academic researchers and industry professionals due to its practical significance in software development, e.g., GitHub Copilot. Despite the active exploration of LLMs for a variety of code tasks, either from the perspective of natural language processing (NLP) or software engineering (SE) or both, there is a noticeable absence of a comprehensive and up-to-date literature review dedicated to LLM for code generation. In this survey, we aim to bridge this gap by providing a systematic literature review that serves as a valuable reference for researchers investigating the cutting-edge progress in LLMs for code generation. We introduce a taxonomy to categorize and discuss the recent developments in LLMs for code generation, covering aspects such as data curation, latest advances, performance evaluation, ethical implications, environmental impact, and real-world applications. In addition, we present a historical overview of the evolution of LLMs for code generation and offer an empirical comparison using the HumanEval, MBPP, and BigCodeBench benchmarks across various levels of difficulty and types of programming tasks to highlight the progressive enhancements in LLM capabilities for code generation. We identify critical challenges and promising opportunities regarding the gap between academia and practical development. Furthermore, we have established a dedicated resource GitHub page (//github.com/juyongjiang/CodeLLMSurvey) to continuously document and disseminate the most recent advances in the field.
Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning using Chain-of-Thought (CoT) prompting. However, CoT can be biased by users' instruction. In this work, we study the reasoning robustness of LLMs to typographical errors, which can naturally occur in users' queries. We design an Adversarial Typo Attack ($\texttt{ATA}$) algorithm that iteratively samples typos for words that are important to the query and selects the edit that is most likely to succeed in attacking. It shows that LLMs are sensitive to minimal adversarial typographical changes. Notably, with 1 character edit, Mistral-7B-Instruct's accuracy drops from 43.7% to 38.6% on GSM8K, while with 8 character edits the performance further drops to 19.2%. To extend our evaluation to larger and closed-source LLMs, we develop the $\texttt{R$^2$ATA}$ benchmark, which assesses models' $\underline{R}$easoning $\underline{R}$obustness to $\underline{\texttt{ATA}}$. It includes adversarial typographical questions derived from three widely used reasoning datasets-GSM8K, BBH, and MMLU-by applying $\texttt{ATA}$ to open-source LLMs. $\texttt{R$^2$ATA}$ demonstrates remarkable transferability and causes notable performance drops across multiple super large and closed-source LLMs.
Kolmogorov-Arnold Networks have recently been introduced as a flexible alternative to multi-layer Perceptron architectures. In this paper, we examine the training dynamics of different KAN architectures and compare them with corresponding MLP formulations. We train with a variety of different initialization schemes, optimizers, and learning rates, as well as utilize back propagation free approaches like the HSIC Bottleneck. We find that (when judged by test accuracy) KANs are an effective alternative to MLP architectures on high-dimensional datasets and have somewhat better parameter efficiency, but suffer from more unstable training dynamics. Finally, we provide recommendations for improving training stability of larger KAN models.
Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm