亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that confidence intervals in a variance component model, with asymptotically correct uniform coverage probability, can be obtained by inverting certain test-statistics based on the score for the restricted likelihood. The results apply in settings where the variance is near or at the boundary of the parameter set. Simulations indicate the proposed test-statistics are approximately pivotal and lead to confidence intervals with near-nominal coverage even in small samples. We illustrate our methods' application in spatially-resolved transcriptomics where we compute approximately 15,000 confidence intervals, used for gene ranking, in less than 4 minutes. In the settings we consider, the proposed method is between two and 28,000 times faster than popular alternatives, depending on how many confidence intervals are computed.

相關內容

Tree-based models for probability distributions are usually specified using a predetermined, data-independent collection of candidate recursive partitions of the sample space. To characterize an unknown target density in detail over the entire sample space, candidate partitions must have the capacity to expand deeply into all areas of the sample space with potential non-zero sampling probability. Such an expansive system of partitions often incurs prohibitive computational costs and makes inference prone to overfitting, especially in regions with little probability mass. Existing models typically make a compromise and rely on relatively shallow trees. This hampers one of the most desirable features of trees, their ability to characterize local features, and results in reduced statistical efficiency. Traditional wisdom suggests that this compromise is inevitable to ensure coherent likelihood-based reasoning, as a data-dependent partition system that allows deeper expansion only in regions with more observations would induce double dipping of the data and thus lead to inconsistent inference. We propose a simple strategy to restore coherency while allowing the candidate partitions to be data-dependent, using Cox's partial likelihood. This strategy parametrizes the tree-based sampling model according to the allocation of probability mass based on the observed data, and yet under appropriate specification, the resulting inference remains valid. Our partial likelihood approach is broadly applicable to existing likelihood-based methods and in particular to Bayesian inference on tree-based models. We give examples in density estimation in which the partial likelihood is endowed with existing priors on tree-based models and compare with the standard, full-likelihood approach. The results show substantial gains in estimation accuracy and computational efficiency from using the partial likelihood.

For several types of information relations, the induced rough sets system RS does not form a lattice but only a partially ordered set. However, by studying its Dedekind-MacNeille completion DM(RS), one may reveal new important properties of rough set structures. Building upon D. Umadevi's work on describing joins and meets in DM(RS), we previously investigated pseudo-Kleene algebras defined on DM(RS) for reflexive relations. This paper delves deeper into the order-theoretic properties of DM(RS) in the context of reflexive relations. We describe the completely join-irreducible elements of DM(RS) and characterize when DM(RS) is a spatial completely distributive lattice. We show that even in the case of a non-transitive reflexive relation, DM(RS) can form a Nelson algebra, a property generally associated with quasiorders. We introduce a novel concept, the core of a relational neighborhood, and use it to provide a necessary and sufficient condition for DM(RS) to determine a Nelson algebra.

Regularization is a critical technique for ensuring well-posedness in solving inverse problems with incomplete measurement data. Traditionally, the regularization term is designed based on prior knowledge of the unknown signal's characteristics, such as sparsity or smoothness. Inhomogeneous regularization, which incorporates a spatially varying exponent $p$ in the standard $\ell_p$-norm-based framework, has been used to recover signals with spatially varying features. This study introduces weighted inhomogeneous regularization, an extension of the standard approach incorporating a novel exponent design and spatially varying weights. The proposed exponent design mitigates misclassification when distinct characteristics are spatially close, while the weights address challenges in recovering regions with small-scale features that are inadequately captured by traditional $\ell_p$-norm regularization. Numerical experiments, including synthetic image reconstruction and the recovery of sea ice data from incomplete wave measurements, demonstrate the effectiveness of the proposed method.

In reinsurance, Poisson and Negative binomial distributions are employed for modeling frequency. However, the incomplete data regarding reported incurred claims above a priority level presents challenges in estimation. This paper focuses on frequency estimation using Schnieper's framework for claim numbering. We demonstrate that Schnieper's model is consistent with a Poisson distribution for the total number of claims above a priority at each year of development, providing a robust basis for parameter estimation. Additionally, we explain how to build an alternative assumption based on a Negative binomial distribution, which yields similar results. The study includes a bootstrap procedure to manage uncertainty in parameter estimation and a case study comparing assumptions and evaluating the impact of the bootstrap approach.

Approximating field variables and data vectors from sparse samples is a key challenge in computational science. Widely used methods such as gappy proper orthogonal decomposition and empirical interpolation rely on linear approximation spaces, limiting their effectiveness for data representing transport-dominated and wave-like dynamics. To address this limitation, we introduce quadratic manifold sparse regression, which trains quadratic manifolds with a sparse greedy method and computes approximations on the manifold through novel nonlinear projections of sparse samples. The nonlinear approximations obtained with quadratic manifold sparse regression achieve orders of magnitude higher accuracies than linear methods on data describing transport-dominated dynamics in numerical experiments.

Background: The standard regulatory approach to assess replication success is the two-trials rule, requiring both the original and the replication study to be significant with effect estimates in the same direction. The sceptical p-value was recently presented as an alternative method for the statistical assessment of the replicability of study results. Methods: We compare the statistical properties of the sceptical p-value and the two-trials rule. We illustrate the performance of the different methods using real-world evidence emulations of randomized, controlled trials (RCTs) conducted within the RCT DUPLICATE initiative. Results: The sceptical p-value depends not only on the two p-values, but also on sample size and effect size of the two studies. It can be calibrated to have the same Type-I error rate as the two-trials rule, but has larger power to detect an existing effect. In the application to the results from the RCT DUPLICATE initiative, the sceptical p-value leads to qualitatively similar results than the two-trials rule, but tends to show more evidence for treatment effects compared to the two-trials rule. Conclusion: The sceptical p-value represents a valid statistical measure to assess the replicability of study results and is especially useful in the context of real-world evidence emulations.

In this paper, we consider a class of non-convex and non-smooth sparse optimization problems, which encompass most existing nonconvex sparsity-inducing terms. We show the second-order optimality conditions only depend on the nonzeros of the stationary points. We propose two damped iterative reweighted algorithms including the iteratively reweighted $\ell_1$ algorithm (DIRL$_1$) and the iteratively reweighted $\ell_2$ (DIRL$_2$) algorithm, to solve these problems. For DIRL$_1$, we show the reweighted $\ell_1$ subproblem has support identification property so that DIRL$_1$ locally reverts to a gradient descent algorithm around a stationary point. For DIRL$_2$, we show the solution map of the reweighted $\ell_2$ subproblem is differentiable and Lipschitz continuous everywhere. Therefore, the map of DIRL$_1$ and DIRL$_2$ and their inverse are Lipschitz continuous, and the strict saddle points are their unstable fixed points. By applying the stable manifold theorem, these algorithms are shown to converge only to local minimizers with randomly initialization when the strictly saddle point property is assumed.

Ensemble forecasts often outperform forecasts from individual standalone models, and have been used to support decision-making and policy planning in various fields. As collaborative forecasting efforts to create effective ensembles grow, so does interest in understanding individual models' relative importance in the ensemble. To this end, we propose two practical methods that measure the difference between ensemble performance when a given model is or is not included in the ensemble: a leave-one-model-out algorithm and a leave-all-subsets-of-models-out algorithm, which is based on the Shapley value. We explore the relationship between these metrics, forecast accuracy, and the similarity of errors, both analytically and through simulations. We illustrate this measure of the value a component model adds to an ensemble in the presence of other models using US COVID-19 death forecasts. This study offers valuable insight into individual models' unique features within an ensemble, which standard accuracy metrics alone cannot reveal.

We consider the problem of causal inference based on observational data (or the related missing data problem) with a binary or discrete treatment variable. In that context, we study inference for the counterfactual density functions and contrasts thereof, which can provide more nuanced information than counterfactual means and the average treatment effect. We impose the shape-constraint of log-concavity, a type of unimodality constraint, on the counterfactual densities, and then develop doubly robust estimators of the log-concave counterfactual density based on augmented inverse-probability weighted pseudo-outcomes. We provide conditions under which the estimator is consistent in various global metrics. We also develop asymptotically valid pointwise confidence intervals for the counterfactual density functions and differences and ratios thereof, which serve as a building block for more comprehensive analyses of distributional differences. We also present a method for using our estimator to implement density confidence bands.

Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.

北京阿比特科技有限公司