Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.
Language model based pre-trained models such as BERT have provided significant gains across different NLP tasks. In this paper, we study different types of pre-trained transformer based models such as auto-regressive models (GPT-2), auto-encoder models (BERT), and seq2seq models (BART) for conditional data augmentation. We show that prepending the class labels to text sequences provides a simple yet effective way to condition the pre-trained models for data augmentation. On three classification benchmarks, pre-trained Seq2Seq model outperforms other models. Further, we explore how different pre-trained model based data augmentation differs in-terms of data diversity, and how well such methods preserve the class-label information.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
We explore deep autoregressive Transformer models in language modeling for speech recognition. We focus on two aspects. First, we revisit Transformer model configurations specifically for language modeling. We show that well configured Transformer models outperform our baseline models based on the shallow stack of LSTM recurrent neural network layers. We carry out experiments on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level and 10K byte-pair encoding subword-level language modeling. We apply our word-level models to conventional hybrid speech recognition by lattice rescoring, and the subword-level models to attention based encoder-decoder models by shallow fusion. Second, we show that deep Transformer language models do not require positional encoding. The positional encoding is an essential augmentation for the self-attention mechanism which is invariant to sequence ordering. However, in autoregressive setup, as is the case for language modeling, the amount of information increases along the position dimension, which is a positional signal by its own. The analysis of attention weights shows that deep autoregressive self-attention models can automatically make use of such positional information. We find that removing the positional encoding even slightly improves the performance of these models.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
Recent works have highlighted the strengths of the Transformer architecture for dealing with sequence tasks. At the same time, neural architecture search has advanced to the point where it can outperform human-designed models. The goal of this work is to use architecture search to find a better Transformer architecture. We first construct a large search space inspired by the recent advances in feed-forward sequential models and then run evolutionary architecture search, seeding our initial population with the Transformer. To effectively run this search on the computationally expensive WMT 2014 English-German translation task, we develop the progressive dynamic hurdles method, which allows us to dynamically allocate more resources to more promising candidate models. The architecture found in our experiments - the Evolved Transformer - demonstrates consistent improvement over the Transformer on four well-established language tasks: WMT 2014 English-German, WMT 2014 English-French, WMT 2014 English-Czech and LM1B. At big model size, the Evolved Transformer is twice as efficient as the Transformer in FLOPS without loss in quality. At a much smaller - mobile-friendly - model size of ~7M parameters, the Evolved Transformer outperforms the Transformer by 0.7 BLEU on WMT'14 English-German.
Music relies heavily on repetition to build structure and meaning. Self-reference occurs on multiple timescales, from motifs to phrases to reusing of entire sections of music, such as in pieces with ABA structure. The Transformer (Vaswani et al., 2017), a sequence model based on self-attention, has achieved compelling results in many generation tasks that require maintaining long-range coherence. This suggests that self-attention might also be well-suited to modeling music. In musical composition and performance, however, relative timing is critically important. Existing approaches for representing relative positional information in the Transformer modulate attention based on pairwise distance (Shaw et al., 2018). This is impractical for long sequences such as musical compositions since their memory complexity for intermediate relative information is quadratic in the sequence length. We propose an algorithm that reduces their intermediate memory requirement to linear in the sequence length. This enables us to demonstrate that a Transformer with our modified relative attention mechanism can generate minute-long compositions (thousands of steps, four times the length modeled in Oore et al., 2018) with compelling structure, generate continuations that coherently elaborate on a given motif, and in a seq2seq setup generate accompaniments conditioned on melodies. We evaluate the Transformer with our relative attention mechanism on two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art results on the latter.
This paper investigates the impact of word-based RNN language models (RNN-LMs) on the performance of end-to-end automatic speech recognition (ASR). In our prior work, we have proposed a multi-level LM, in which character-based and word-based RNN-LMs are combined in hybrid CTC/attention-based ASR. Although this multi-level approach achieves significant error reduction in the Wall Street Journal (WSJ) task, two different LMs need to be trained and used for decoding, which increase the computational cost and memory usage. In this paper, we further propose a novel word-based RNN-LM, which allows us to decode with only the word-based LM, where it provides look-ahead word probabilities to predict next characters instead of the character-based LM, leading competitive accuracy with less computation compared to the multi-level LM. We demonstrate the efficacy of the word-based RNN-LMs using a larger corpus, LibriSpeech, in addition to WSJ we used in the prior work. Furthermore, we show that the proposed model achieves 5.1 %WER for WSJ Eval'92 test set when the vocabulary size is increased, which is the best WER reported for end-to-end ASR systems on this benchmark.