In Federated Learning (FL), the data in each client is typically assumed fixed or static. However, data often comes in an incremental manner in real-world applications, where the data domain may increase dynamically. In this work, we study catastrophic forgetting with data heterogeneity in Federated Incremental Learning (FIL) scenarios where edge clients may lack enough storage space to retain full data. We propose to employ a simple, generic framework for FIL named Re-Fed, which can coordinate each client to cache important samples for replay. More specifically, when a new task arrives, each client first caches selected previous samples based on their global and local importance. Then, the client trains the local model with both the cached samples and the samples from the new task. Theoretically, we analyze the ability of Re-Fed to discover important samples for replay thus alleviating the catastrophic forgetting problem. Moreover, we empirically show that Re-Fed achieves competitive performance compared to state-of-the-art methods.
Generalized Continual Category Discovery (GCCD) tackles learning from sequentially arriving, partially labeled datasets while uncovering new categories. Traditional methods depend on feature distillation to prevent forgetting the old knowledge. However, this strategy restricts the model's ability to adapt and effectively distinguish new categories. To address this, we introduce a novel technique integrating a learnable projector with feature distillation, thus enhancing model adaptability without sacrificing past knowledge. The resulting distribution shift of the previously learned categories is mitigated with the auxiliary category adaptation network. We demonstrate that while each component offers modest benefits individually, their combination - dubbed CAMP (Category Adaptation Meets Projected distillation) - significantly improves the balance between learning new information and retaining old. CAMP exhibits superior performance across several GCCD and Class Incremental Learning scenarios. The code is available at //github.com/grypesc/CAMP.
The emergence of Large Language Models (LLMs) has revolutionized how users access information, shifting from traditional search engines to direct question-and-answer interactions with LLMs. However, the widespread adoption of LLMs has revealed a significant challenge known as hallucination, wherein LLMs generate coherent yet factually inaccurate responses. This hallucination phenomenon has led to users' distrust in information retrieval systems based on LLMs. To tackle this challenge, this paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in LLMs. DRAD improves upon traditional retrieval augmentation by dynamically adapting the retrieval process based on real-time hallucination detection. It features two main components: Real-time Hallucination Detection (RHD) for identifying potential hallucinations without external models, and Self-correction based on External Knowledge (SEK) for correcting these errors using external knowledge. Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs. All of our code and data are open-sourced at //github.com/oneal2000/EntityHallucination.
We propose a framework for the analysis of transmission channels in a large class of dynamic models. To this end, we formulate our approach both using graph theory and potential outcomes, which we show to be equivalent. Our method, labelled Transmission Channel Analysis (TCA), allows for the decomposition of total effects captured by impulse response functions into the effects flowing along transmission channels, thereby providing a quantitative assessment of the strength of various transmission channels. We establish that this requires no additional identification assumptions beyond the identification of the structural shock whose effects the researcher wants to decompose. Additionally, we prove that impulse response functions are sufficient statistics for the computation of transmission effects. We demonstrate the empirical relevance of TCA for policy evaluation by decomposing the effects of policy shocks arising from a variety of popular macroeconomic models.
Big data, encompassing extensive datasets, has seen rapid expansion, notably with a considerable portion being textual data, including strings and texts. Simple compression methods and standard data structures prove inadequate for processing these datasets, as they require decompression for usage or consume extensive memory resources. Consequently, this motivation has led to the development of compressed data structures that support various queries for a given string, typically operating in polylogarithmic time and utilizing compressed space proportional to the string's length. Notably, the suffix array (SA) query is a critical component in implementing a suffix tree, which has a broad spectrum of applications. A line of research has been conducted on (especially, static) compressed data structures that support the SA query. A common finding from most of the studies is the suboptimal space efficiency of existing compressed data structures. Kociumaka, Navarro, and Prezza [IEEE Trans. Inf. Theory 2023] have made a significant contribution by introducing an asymptotically minimal space requirement, $O\left(\delta \log\frac{n\log\sigma}{\delta\log n} \log n \right)$ bits ($\delta$-optimal space), sufficient to represent any string of length $n$, with an alphabet size of $\sigma$, and substring complexity $\delta$, serving as a measure of repetitiveness. More recently, Kempa and Kociumaka [FOCS 2023] presented $\delta$-SA, a compressed data structure supporting SA queries in $\delta$-optimal space. However, the data structures introduced thus far are static. We present the first dynamic compressed data structure that supports the SA query and update in polylogarithmic time and $\delta$-optimal space. More precisely, it can answer SA queries and perform updates in $O(\log^7 n)$ and expected $O(\log^8 n)$ time, respectively, using an expected $\delta$-optimal space.
We consider access control for IoT systems that involves shared accesses to the IoT devices as well as their data. Since IoT devices are dispersed all over the edge of the Internet, traditional centralized access control has problems. Blockchain based decentralized access control is thus the new solution trend. However, existing blockchain based access control methods do not focus on performance issues and may incur a high communication overhead. In this paper, we develop a Pruning Blockchain based Access Control (PBAC) protocol to cutdown the unnecessary message rounds and achieve high efficiency in access validations and policy management. The protocol includes a shortcut and a Role and Device Hierarchy-Based Access Control (R&D-BAC) approaches for different environment settings. To realize the PBAC protocol, it is necessary to carefully engineer the system architecture, which is also discussed in the paper. Experiments demonstrate the efficacy of the PBAC protocol, specifically, the shortcut mechanism reduces access time by approximately 43%, and R&D-BAC outperforms traditional blockchain based RBAC by more than two folds.
We introduce a model of probabilistic verification in mechanism design. The principal elicits a message from the agent and then selects a test to give the agent. The agent's true type determines the probability with which he can pass each test. We characterize whether each type has an associated test that best screens out all other types. If this condition holds, then the testing technology can be represented in a tractable reduced form. We use this reduced form to solve for profit-maximizing mechanisms with verification. As the verification technology varies, the solution continuously interpolates between the no-verification solution and full surplus extraction.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
In the era of deep learning, modeling for most NLP tasks has converged to several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, NER, Chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have observed a rising trend of Paradigm Shift, which is solving one NLP task by reformulating it as another one. Paradigm shift has achieved great success on many tasks, becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.