3D Skeleton-based human action recognition has attracted increasing attention in recent years. Most of the existing work focuses on supervised learning which requires a large number of labeled action sequences that are often expensive and time-consuming to annotate. In this paper, we address self-supervised 3D action representation learning for skeleton-based action recognition. We investigate self-supervised representation learning and design a novel skeleton cloud colorization technique that is capable of learning spatial and temporal skeleton representations from unlabeled skeleton sequence data. We represent a skeleton action sequence as a 3D skeleton cloud and colorize each point in the cloud according to its temporal and spatial orders in the original (unannotated) skeleton sequence. Leveraging the colorized skeleton point cloud, we design an auto-encoder framework that can learn spatial-temporal features from the artificial color labels of skeleton joints effectively. Specifically, we design a two-steam pretraining network that leverages fine-grained and coarse-grained colorization to learn multi-scale spatial-temporal features. In addition, we design a Masked Skeleton Cloud Repainting task that can pretrain the designed auto-encoder framework to learn informative representations. We evaluate our skeleton cloud colorization approach with linear classifiers trained under different configurations, including unsupervised, semi-supervised, fully-supervised, and transfer learning settings. Extensive experiments on NTU RGB+D, NTU RGB+D 120, PKU-MMD, NW-UCLA, and UWA3D datasets show that the proposed method outperforms existing unsupervised and semi-supervised 3D action recognition methods by large margins and achieves competitive performance in supervised 3D action recognition as well.
In recent studies on MRI reconstruction, advances have shown significant promise for further accelerating the MRI acquisition. Most state-of-the-art methods require a large amount of fully-sampled data to optimise reconstruction models, which is impractical and expensive under certain clinical settings. On the other hand, for unsupervised scan-specific reconstruction methods, overfitting is likely to happen due to insufficient supervision, while restrictions on acceleration rates and under-sampling patterns further limit their applicability. To this end, we propose an unsupervised, adaptive coarse-to-fine framework that enhances reconstruction quality without being constrained by the sparsity levels or patterns in under-sampling. The framework employs an implicit neural representation for scan-specific MRI reconstruction, learning a mapping from multi-dimensional coordinates to their corresponding signal intensities. Moreover, we integrate a novel learning strategy that progressively refines the use of acquired k-space signals for self-supervision. This approach effectively adjusts the proportion of supervising signals from unevenly distributed information across different frequency bands, thus mitigating the issue of overfitting while improving the overall reconstruction. Comprehensive evaluation on a public dataset, including both 2D and 3D data, has shown that our method outperforms current state-of-the-art scan-specific MRI reconstruction techniques, for up to 8-fold under-sampling.
Deep learning succeeds by doing hierarchical feature learning, yet tuning Hyper-Parameters (HP) such as initialization scales, learning rates etc., only give indirect control over this behavior. In this paper, we propose the alignment between the feature updates and the backward pass as a key notion to predict, measure and control feature learning. On the one hand, we show that when alignment holds, the magnitude of feature updates after one SGD step is related to the magnitude of the forward and backward passes by a simple and general formula. This leads to techniques to automatically adjust HPs (initialization scales and learning rates) at initialization and throughout training to attain a desired feature learning behavior. On the other hand, we show that, at random initialization, this alignment is determined by the spectrum of a certain kernel, and that well-conditioned layer-to-layer Jacobians (aka dynamical isometry) implies alignment. Finally, we investigate ReLU MLPs and ResNets in the large width-then-depth limit. Combining hints from random matrix theory and numerical experiments, we show that (i) in MLP with iid initializations, alignment degenerates with depth, making it impossible to start training, and that (ii) in ResNets, the branch scale $1/\sqrt{\text{depth}}$ is the only one maintaining non-trivial alignment at infinite depth.
Self-supervised learning is one of the most promising approaches to acquiring knowledge from limited labeled data. Despite the substantial advancements made in recent years, self-supervised models have posed a challenge to practitioners, as they do not readily provide insight into the model's confidence and uncertainty. Tackling this issue is no simple feat, primarily due to the complexity involved in implementing techniques that can make use of the latent representations learned during pre-training without relying on explicit labels. Motivated by this, we introduce a new stochastic vision transformer that integrates uncertainty and distance awareness into self-supervised learning (SSL) pipelines. Instead of the conventional deterministic vector embedding, our novel stochastic vision transformer encodes image patches into elliptical Gaussian distributional embeddings. Notably, the attention matrices of these stochastic representational embeddings are computed using Wasserstein distance-based attention, effectively capitalizing on the distributional nature of these embeddings. Additionally, we propose a regularization term based on Wasserstein distance for both pre-training and fine-tuning processes, thereby incorporating distance awareness into latent representations. We perform extensive experiments across different tasks such as in-distribution generalization, out-of-distribution detection, dataset corruption, semi-supervised settings, and transfer learning to other datasets and tasks. Our proposed method achieves superior accuracy and calibration, surpassing the self-supervised baseline in a wide range of experiments on a variety of datasets.
Federated Learning (FL) is the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios. As the current literature reports, the main problems associated with FL refer to system and statistical challenges: the former ones demand for efficient learning from edge devices, including lowering communication bandwidth and frequency, while the latter require algorithms robust to non-iidness. State-of-art approaches either guarantee convergence at increased communication cost or are not sufficiently robust to handle extreme heterogeneous local distributions. In this work we propose a novel generalization of the heavy-ball momentum, and present FedHBM to effectively address statistical heterogeneity in FL without introducing any communication overhead. We conduct extensive experimentation on common FL vision and NLP datasets, showing that our FedHBM algorithm empirically yields better model quality and higher convergence speed w.r.t. the state-of-art, especially in pathological non-iid scenarios. While being designed for cross-silo settings, we show how FedHBM is applicable in moderate-to-high cross-device scenarios, and how good model initializations (e.g. pre-training) can be exploited for prompt acceleration. Extended experimentation on large-scale real-world federated datasets further corroborates the effectiveness of our approach for real-world FL applications.
With the proliferation of edge computing, efficient AI inference on edge devices has become essential for intelligent applications such as autonomous vehicles and VR/AR. In this context, we address the problem of efficient remote object recognition by optimizing feature transmission between mobile devices and edge servers. We propose an online optimization framework to address the challenge of dynamic channel conditions and device mobility in an end-to-end communication system. Our approach builds upon existing methods by leveraging a semantic knowledge base to drive multi-level feature transmission, accounting for temporal factors and dynamic elements throughout the transmission process. To solve the online optimization problem, we design a novel soft actor-critic-based deep reinforcement learning system with a carefully designed reward function for real-time decision-making, overcoming the optimization difficulty of the NP-hard problem and achieving the minimization of semantic loss while respecting latency constraints. Numerical results showcase the superiority of our approach compared to traditional greedy methods under various system setups.
Despite lagging behind their modal cousins in many respects, Vision Transformers have provided an interesting opportunity to bridge the gap between sequence modeling and image modeling. Up until now however, vision transformers have largely been held back, due to both computational inefficiency, and lack of proper handling of spatial dimensions. In this paper, we introduce the Cross-Axis Transformer. CAT is a model inspired by both Axial Transformers, and Microsoft's recent Retentive Network, that drastically reduces the required number of floating point operations required to process an image, while simultaneously converging faster and more accurately than the Vision Transformers it replaces.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.