亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adaptive multi-agent formation control, which requires the formation to flexibly adjust along with the quantity variations of agents in a decentralized manner, belongs to one of the most challenging issues in multi-agent systems, especially under communication-limited constraints. In this paper, we propose a novel Consensus-based Decentralized Adaptive Formation (Cons-DecAF) framework. Specifically, we develop a novel multi-agent reinforcement learning method, Consensus-oriented Multi-Agent Communication (ConsMAC), to enable agents to perceive global information and establish the consensus from local states by effectively aggregating neighbor messages. Afterwards, we leverage policy distillation to accomplish the adaptive formation adjustment. Meanwhile, instead of pre-assigning specific positions of agents, we employ a displacement-based formation by Hausdorff distance to significantly improve the formation efficiency. The experimental results through extensive simulations validate that the proposed method has achieved outstanding performance in terms of both speed and stability.

相關內容

One main challenge for implementing intelligent reflecting surface (IRS) aided communications lies in the difficulty to obtain the channel knowledge for the base station (BS)-IRS-user cascaded links, which is needed to design high-performance IRS reflection in practice. Traditional methods for estimating IRS cascaded channels are usually based on the additional pilot signals received at the BS/users, which increase the system training overhead and also may not be compatible with the current communication protocols. To tackle this challenge, we propose in this paper a new single-layer neural network (NN)-enabled IRS channel estimation method based on only the knowledge of users' individual received signal power measurements corresponding to different IRS random training reflections, which are easily accessible in current wireless systems. To evaluate the effectiveness of the proposed channel estimation method, we design the IRS reflection for data transmission based on the estimated cascaded channels in an IRS-aided multiuser communication system. Numerical results show that the proposed IRS channel estimation and reflection design can significantly improve the minimum received signal-to-noise ratio (SNR) among all users, as compared to existing power measurement based designs.

Many real-world dynamical systems can be described as State-Space Models (SSMs). In this formulation, each observation is emitted by a latent state, which follows first-order Markovian dynamics. A Probabilistic Deep SSM (ProDSSM) generalizes this framework to dynamical systems of unknown parametric form, where the transition and emission models are described by neural networks with uncertain weights. In this work, we propose the first deterministic inference algorithm for models of this type. Our framework allows efficient approximations for training and testing. We demonstrate in our experiments that our new method can be employed for a variety of tasks and enjoys a superior balance between predictive performance and computational budget.

Gaussian process is an indispensable tool in clustering functional data, owing to it's flexibility and inherent uncertainty quantification. However, when the functional data is observed over a large grid (say, of length $p$), Gaussian process clustering quickly renders itself infeasible, incurring $O(p^2)$ space complexity and $O(p^3)$ time complexity per iteration; and thus prohibiting it's natural adaptation to large environmental applications. To ensure scalability of Gaussian process clustering in such applications, we propose to embed the popular Vecchia approximation for Gaussian processes at the heart of the clustering task, provide crucial theoretical insights towards algorithmic design, and finally develop a computationally efficient expectation maximization (EM) algorithm. Empirical evidence of the utility of our proposal is provided via simulations and analysis of polar temperature anomaly (\href{//www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series}{noaa.gov}) data-sets.

Despite the promising progress in multi-modal tasks, current large multi-modal models (LMM) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset consists of 120k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at two semantic levels: (i) Nonexistent Element Manipulation and (ii) Existent Element Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a novel approach to evaluate visual instruction tuning without the need for human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate that existing LMMs exhibit significant hallucination when presented with our negative instructions, particularly with Existent Element Manipulation instructions. Moreover, by finetuning MiniGPT4 on LRV-Instruction, we successfully mitigate hallucination while improving performance on public datasets using less training data compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model. Updates of our project are available at //fuxiaoliu.github.io/LRV/.

Smishing, also known as SMS phishing, is a type of fraudulent communication in which an attacker disguises SMS communications to deceive a target into providing their sensitive data. Smishing attacks use a variety of tactics; however, they have a similar goal of stealing money or personally identifying information (PII) from a victim. In response to these attacks, a wide variety of anti-smishing tools have been developed to block or filter these communications. Despite this, the number of phishing attacks continue to rise. In this paper, we developed a test bed for measuring the effectiveness of popular anti-smishing tools against fresh smishing attacks. To collect fresh smishing data, we introduce Smishtank.com, a collaborative online resource for reporting and collecting smishing data sets. The SMS messages were validated by a security expert and an in-depth qualitative analysis was performed on the collected messages to provide further insights. To compare tool effectiveness, we experimented with 20 smishing and benign messages across 3 key segments of the SMS messaging delivery ecosystem. Our results revealed significant room for improvement in all 3 areas against our smishing set. Most anti-phishing apps and bulk messaging services didn't filter smishing messages beyond the carrier blocking. The 2 apps that blocked the most smish also blocked 85-100\% of benign messages. Finally, while carriers did not block any benign messages, they were only able to reach a 25-35\% blocking rate for smishing messages. Our work provides insights into the performance of anti-smishing tools and the roles they play in the message blocking process. This paper would enable the research community and industry to be better informed on the current state of anti-smishing technology on the SMS platform.

In typical in-hand manipulation tasks represented by object pivoting, the real-time perception of rotational slippage has been proven beneficial for improving the dexterity and stability of robotic hands. An effective strategy is to obtain the contact properties for measuring rotation angle through visuotactile sensing. However, existing methods for rotation estimation did not consider the impact of the incipient slip during the pivoting process, which introduces measurement errors and makes it hard to determine the boundary between stable contact and macro slip. This paper describes a generalized 2-d contact model under pivoting, and proposes a rotation measurement method based on the line-features in the stick region. The proposed method was applied to the Tac3D vision-based tactile sensors using continuous marker patterns. Experiments show that the rotation measurement system could achieve an average static measurement error of 0.17 degree and an average dynamic measurement error of 1.34 degree. Besides, the proposed method requires no training data and can achieve real-time sensing during the in-hand object pivoting.

We consider a decentralized formulation of the active hypothesis testing (AHT) problem, where multiple agents gather noisy observations from the environment with the purpose of identifying the correct hypothesis. At each time step, agents have the option to select a sampling action. These different actions result in observations drawn from various distributions, each associated with a specific hypothesis. The agents collaborate to accomplish the task, where message exchanges between agents are allowed over a rate-limited communications channel. The objective is to devise a multi-agent policy that minimizes the Bayes risk. This risk comprises both the cost of sampling and the joint terminal cost incurred by the agents upon making a hypothesis declaration. Deriving optimal structured policies for AHT problems is generally mathematically intractable, even in the context of a single agent. As a result, recent efforts have turned to deep learning methodologies to address these problems, which have exhibited significant success in single-agent learning scenarios. In this paper, we tackle the multi-agent AHT formulation by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning. This algorithm, named Multi-Agent Reinforcement Learning for AHT (MARLA), operates at each time step by having each agent map its state to an action (sampling rule or stopping rule) using a trained deep neural network with the goal of minimizing the Bayes risk. We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance using MARLA. Furthermore, we demonstrate the superiority of MARLA over single-agent learning approaches. Finally, we provide an open-source implementation of the MARLA framework, for the benefit of researchers and developers in related domains.

Unsupervised contrastive learning methods have recently seen significant improvements, particularly through data augmentation strategies that aim to produce robust and generalizable representations. However, prevailing data augmentation methods, whether hand designed or based on foundation models, tend to rely heavily on prior knowledge or external data. This dependence often compromises their effectiveness and efficiency. Furthermore, the applicability of most existing data augmentation strategies is limited when transitioning to other research domains, especially science-related data. This limitation stems from the paucity of prior knowledge and labeled data available in these domains. To address these challenges, we introduce DiffAug-a novel and efficient Diffusion-based data Augmentation technique. DiffAug aims to ensure that the augmented and original data share a smoothed latent space, which is achieved through diffusion steps. Uniquely, unlike traditional methods, DiffAug first mines sufficient prior semantic knowledge about the neighborhood. This provides a constraint to guide the diffusion steps, eliminating the need for labels, external data/models, or prior knowledge. Designed as an architecture-agnostic framework, DiffAug provides consistent improvements. Specifically, it improves image classification and clustering accuracy by 1.6%~4.5%. When applied to biological data, DiffAug improves performance by up to 10.1%, with an average improvement of 5.8%. DiffAug shows good performance in both vision and biological domains.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司