Safety and performance are key enablers for autonomous driving: on the one hand we want our autonomous vehicles (AVs) to be safe, while at the same time their performance (e.g., comfort or progression) is key to adoption. To effectively walk the tight-rope between safety and performance, AVs need to be risk-averse, but not entirely risk-avoidant. To facilitate safe-yet-performant driving, in this paper, we develop a task-aware risk estimator that assesses the risk a perception failure poses to the AV's motion plan. If the failure has no bearing on the safety of the AV's motion plan, then regardless of how egregious the perception failure is, our task-aware risk estimator considers the failure to have a low risk; on the other hand, if a seemingly benign perception failure severely impacts the motion plan, then our estimator considers it to have a high risk. In this paper, we propose a task-aware risk estimator to decide whether a safety maneuver needs to be triggered. To estimate the task-aware risk, first, we leverage the perception failure - detected by a perception monitor - to synthesize an alternative plausible model for the vehicle's surroundings. The risk due to the perception failure is then formalized as the "relative" risk to the AV's motion plan between the perceived and the alternative plausible scenario. We employ a statistical tool called copula, which models tail dependencies between distributions, to estimate this risk. The theoretical properties of the copula allow us to compute probably approximately correct (PAC) estimates of the risk. We evaluate our task-aware risk estimator using NuPlan and compare it with established baselines, showing that the proposed risk estimator achieves the best F1-score (doubling the score of the best baseline) and exhibits a good balance between recall and precision, i.e., a good balance of safety and performance.
Over the past decades, quadcopters have been investigated, due to their mobility and flexibility to operate in a wide range of environments. They have been used in various areas, including surveillance and monitoring. During a mission, drones do not have to remain active once they have reached a target location. To conserve energy and maintain a static position, it is possible to perch and stop the motors in such situations. The problem of achieving a reliable and highly accurate perching method remains a challenge and promising. In this paper, a vision-based autonomous perching approach for nano quadcopters onto a predefined perching target on horizontal surfaces is proposed. First, a perching target with a small marker inside a larger one is designed to improve detection capability at a variety of ranges. Second, a monocular camera is used to calculate the relative poses of the flying vehicle from the markers detected. Then, a Kalman filter is applied to determine the pose more reliably, especially when measurement data is missing. Next, we introduce an algorithm for merging the pose data from multiple markers. Finally, the poses are sent to the perching planner to conduct the real flight test to align the drone with the target's center and steer it there. Based on the experimental results, the approach proved to be effective and feasible. The drone can successfully perch on the center of markers within two centimeters of precision.
Reliable probabilistic primality tests are fundamental in public-key cryptography. In adversarial scenarios, a composite with a high probability of passing a specific primality test could be chosen. In such cases, we need worst-case error estimates for the test. However, in many scenarios the numbers are randomly chosen and thus have significantly smaller error probability. Therefore, we are interested in average case error estimates. In this paper, we establish such bounds for the strong Lucas primality test, as only worst-case, but no average case error bounds, are currently available. This allows us to use this test with more confidence. We examine an algorithm that draws odd $k$-bit integers uniformly and independently, runs $t$ independent iterations of the strong Lucas test with randomly chosen parameters, and outputs the first number that passes all $t$ consecutive rounds. We attain numerical upper bounds on the probability on returing a composite. Furthermore, we consider a modified version of this algorithm that excludes integers divisible by small primes, resulting in improved bounds. Additionally, we classify the numbers that contribute most to our estimate.
Robotic perception requires the modeling of both 3D geometry and semantics. Existing methods typically focus on estimating 3D bounding boxes, neglecting finer geometric details and struggling to handle general, out-of-vocabulary objects. 3D occupancy prediction, which estimates the detailed occupancy states and semantics of a scene, is an emerging task to overcome these limitations. To support 3D occupancy prediction, we develop a label generation pipeline that produces dense, visibility-aware labels for any given scene. This pipeline comprises three stages: voxel densification, occlusion reasoning, and image-guided voxel refinement. We establish two benchmarks, derived from the Waymo Open Dataset and the nuScenes Dataset, namely Occ3D-Waymo and Occ3D-nuScenes benchmarks. Furthermore, we provide an extensive analysis of the proposed dataset with various baseline models. Lastly, we propose a new model, dubbed Coarse-to-Fine Occupancy (CTF-Occ) network, which demonstrates superior performance on the Occ3D benchmarks. The code, data, and benchmarks are released at //tsinghua-mars-lab.github.io/Occ3D/.
Radar is a key component of the suite of perception sensors used for safe and reliable navigation of autonomous vehicles. Its unique capabilities include high-resolution velocity imaging, detection of agents in occlusion and over long ranges, and robust performance in adverse weather conditions. However, the usage of radar data presents some challenges: it is characterized by low resolution, sparsity, clutter, high uncertainty, and lack of good datasets. These challenges have limited radar deep learning research. As a result, current radar models are often influenced by lidar and vision models, which are focused on optical features that are relatively weak in radar data, thus resulting in under-utilization of radar's capabilities and diminishing its contribution to autonomous perception. This review seeks to encourage further deep learning research on autonomous radar data by 1) identifying key research themes, and 2) offering a comprehensive overview of current opportunities and challenges in the field. Topics covered include early and late fusion, occupancy flow estimation, uncertainty modeling, and multipath detection. The paper also discusses radar fundamentals and data representation, presents a curated list of recent radar datasets, and reviews state-of-the-art lidar and vision models relevant for radar research. For a summary of the paper and more results, visit the website: autonomous-radars.github.io.
Despite the significant advances achieved in Artificial Neural Networks (ANNs), their design process remains notoriously tedious, depending primarily on intuition, experience and trial-and-error. This human-dependent process is often time-consuming and prone to errors. Furthermore, the models are generally bound to their training contexts, with no considerations to their surrounding environments. Continual adaptiveness and automation of neural networks is of paramount importance to several domains where model accessibility is limited after deployment (e.g IoT devices, self-driving vehicles, etc.). Additionally, even accessible models require frequent maintenance post-deployment to overcome issues such as Concept/Data Drift, which can be cumbersome and restrictive. By leveraging and combining approaches from Neural Architecture Search (NAS) and Continual Learning (CL), more robust and adaptive agents can be developed. This study conducts the first extensive review on the intersection between NAS and CL, formalizing the prospective Continually-Adaptive Neural Networks (CANNs) paradigm and outlining research directions for lifelong autonomous ANNs.
In recent years, Machine Learning algorithms, in particular supervised learning techniques, have been shown to be very effective in solving regression problems. We compare the performance of a newly proposed regression algorithm against four conventional machine learning algorithms namely, Decision Trees, Random Forest, k-Nearest Neighbours and XG Boost. The proposed algorithm was presented in detail in a previous paper but detailed comparisons were not included. We do an in-depth comparison, using the Mean Absolute Error (MAE) as the performance metric, on a diverse set of datasets to illustrate the great potential and robustness of the proposed approach. The reader is free to replicate our results since we have provided the source code in a GitHub repository while the datasets are publicly available.
Besides standard cameras, autonomous vehicles typically include multiple additional sensors, such as lidars and radars, which help acquire richer information for perceiving the content of the driving scene. While several recent works focus on fusing certain pairs of sensors - such as camera with lidar or radar - by using architectural components specific to the examined setting, a generic and modular sensor fusion architecture is missing from the literature. In this work, we propose HRFuser, a modular architecture for multi-modal 2D object detection. It fuses multiple sensors in a multi-resolution fashion and scales to an arbitrary number of input modalities. The design of HRFuser is based on state-of-the-art high-resolution networks for image-only dense prediction and incorporates a novel multi-window cross-attention block as the means to perform fusion of multiple modalities at multiple resolutions. We demonstrate via extensive experiments on nuScenes and the adverse conditions DENSE datasets that our model effectively leverages complementary features from additional modalities, substantially improving upon camera-only performance and consistently outperforming state-of-the-art 3D and 2D fusion methods evaluated on 2D object detection metrics. The source code is publicly available.
We consider the problem of estimating a scalar target parameter in the presence of nuisance parameters. Replacing the unknown nuisance parameter with a nonparametric estimator, e.g.,a machine learning (ML) model, is convenient but has shown to be inefficient due to large biases. Modern methods, such as the targeted minimum loss-based estimation (TMLE) and double machine learning (DML), achieve optimal performance under flexible assumptions by harnessing ML estimates while mitigating the plug-in bias. To avoid a sub-optimal bias-variance trade-off, these methods perform a debiasing step of the plug-in pre-estimate. Existing debiasing methods require the influence function of the target parameter as input. However, deriving the IF requires specialized expertise and thus obstructs the adaptation of these methods by practitioners. We propose a novel way to debias plug-in estimators which (i) is efficient, (ii) does not require the IF to be implemented, (iii) is computationally tractable, and therefore can be readily adapted to new estimation problems and automated without analytic derivations by the user. We build on the TMLE framework and update a plug-in estimate with a regularized likelihood maximization step over a nonparametric model constructed with a reproducing kernel Hilbert space (RKHS), producing an efficient plug-in estimate for any regular target parameter. Our method, thus, offers the efficiency of competing debiasing techniques without sacrificing the utility of the plug-in approach.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.