We put forward a simple new randomized missing data (RMD) approach to robust filtering of state-space models, motivated by the idea that the inclusion of only a small fraction of available highly precise measurements can still extract most of the attainable efficiency gains for filtering latent states, estimating model parameters, and producing out-of-sample forecasts. In our general RMD framework we develop two alternative implementations: endogenous (RMD-N) and exogenous (RMD-X) randomization of missing data. A degree of robustness to outliers and model misspecification is achieved by purposely randomizing over the utilized subset of data measurements in their original time series order, while treating the rest as if missing. The arising robustness-efficiency trade-off is controlled by varying the fraction of randomly utilized measurements. Our RMD framework thus relates to but is different from a wide range of machine learning methods trading off bias against variance. It also provides a time-series extension of bootstrap aggregation (bagging). As an empirical illustration, we show consistently attractive performance of RMD filtering and forecasting in popular state space models for extracting inflation trends known to be hindered by measurement outliers.
Mainstream methods for clinical trial design do not yet use prior probabilities of clinical hypotheses, mainly due to a concern that poor priors may lead to weak designs. To address this concern, we illustrate a conservative approach to trial design ensuring that the frequentist operational characteristics of the primary trial outcome are stronger than the design prior. Compared to current approaches to Bayesian design, we focus on defining a sample size cost commensurate to the prior to ensure against the possibility of prior-data conflict. Our approach is ethical, in that it calls for quantification of the level of clinical equipoise at design stage and requires the design to be appropriate to disturb this initial equipoise by a pre-specified amount. Four examples are discussed, illustrating the design of phase II-III trials with binary or time to event endpoints. Sample sizes are shown to be conductive to strong levels of overall evidence, whether positive or negative, increasing the conclusiveness of the design and associated trial outcome. Levels of negative evidence provided by standard group sequential designs are found negligible, underscoring the importance of complementing traditional efficacy boundaries with futility rules.
Federated learning has attracted increasing attention with the emergence of distributed data. While extensive federated learning algorithms have been proposed for the non-convex distributed problem, the federated learning in practice still faces numerous challenges, such as the large training iterations to converge since the sizes of models and datasets keep increasing, and the lack of adaptivity by SGD-based model updates. Meanwhile, the study of adaptive methods in federated learning is scarce and existing works either lack a complete theoretical convergence guarantee or have slow sample complexity. In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on the momentum-based variance reduced technique in cross-silo FL. We first explore how to design the adaptive algorithm in the FL setting. By providing a counter-example, we prove that a simple combination of FL and adaptive methods could lead to divergence. More importantly, we provide a convergence analysis for our method and prove that our algorithm is the first adaptive FL algorithm to reach the best-known samples $O(\epsilon^{-3})$ and $O(\epsilon^{-2})$ communication rounds to find an $\epsilon$-stationary point without large batches. The experimental results on the language modeling task and image classification task with heterogeneous data demonstrate the efficiency of our algorithms.
Uncertainty is prevalent in engineering design, statistical learning, and decision making broadly. Due to inherent risk-averseness and ambiguity about assumptions, it is common to address uncertainty by formulating and solving conservative optimization models expressed using measure of risk and related concepts. We survey the rapid development of risk measures over the last quarter century. From its beginning in financial engineering, we recount their spread to nearly all areas of engineering and applied mathematics. Solidly rooted in convex analysis, risk measures furnish a general framework for handling uncertainty with significant computational and theoretical advantages. We describe the key facts, list several concrete algorithms, and provide an extensive list of references for further reading. The survey recalls connections with utility theory and distributionally robust optimization, points to emerging applications areas such as fair machine learning, and defines measures of reliability.
Intensive Care Units usually carry patients with a serious risk of mortality. Recent research has shown the ability of Machine Learning to indicate the patients' mortality risk and point physicians toward individuals with a heightened need for care. Nevertheless, healthcare data is often subject to privacy regulations and can therefore not be easily shared in order to build Centralized Machine Learning models that use the combined data of multiple hospitals. Federated Learning is a Machine Learning framework designed for data privacy that can be used to circumvent this problem. In this study, we evaluate the ability of deep Federated Learning to predict the risk of Intensive Care Unit mortality at an early stage. We compare the predictive performance of Federated, Centralized, and Local Machine Learning in terms of AUPRC, F1-score, and AUROC. Our results show that Federated Learning performs equally well as the centralized approach and is substantially better than the local approach, thus providing a viable solution for early Intensive Care Unit mortality prediction. In addition, we show that the prediction performance is higher when the patient history window is closer to discharge or death. Finally, we show that using the F1-score as an early stopping metric can stabilize and increase the performance of our approach for the task at hand.
We can protect user data privacy via many approaches, such as statistical transformation or generative models. However, each of them has critical drawbacks. On the one hand, creating a transformed data set using conventional techniques is highly time-consuming. On the other hand, in addition to long training phases, recent deep learning-based solutions require significant computational resources. In this paper, we propose PrivateSMOTE, a technique designed for competitive effectiveness in protecting cases at maximum risk of re-identification while requiring much less time and computational resources. It works by synthetic data generation via interpolation to obfuscate high-risk cases while minimizing data utility loss of the original data. Compared to multiple conventional and state-of-the-art privacy-preservation methods on 20 data sets, PrivateSMOTE demonstrates competitive results in re-identification risk. Also, it presents similar or higher predictive performance than the baselines, including generative adversarial networks and variational autoencoders, reducing their energy consumption and time requirements by a minimum factor of 9 and 12, respectively.
We study differentially private (DP) stochastic optimization (SO) with loss functions whose worst-case Lipschitz parameter over all data points may be extremely large. To date, the vast majority of work on DP SO assumes that the loss is uniformly Lipschitz continuous over data (i.e. stochastic gradients are uniformly bounded over all data points). While this assumption is convenient, it often leads to pessimistic excess risk bounds. In many practical problems, the worst-case Lipschitz parameter of the loss over all data points may be extremely large due to outliers. In such cases, the error bounds for DP SO, which scale with the worst-case Lipschitz parameter of the loss, are vacuous. To address these limitations, this work provides near-optimal excess risk bounds that do not depend on the uniform Lipschitz parameter of the loss. Building on a recent line of work [WXDX20, KLZ22], we assume that stochastic gradients have bounded $k$-th order moments for some $k \geq 2$. Compared with works on uniformly Lipschitz DP SO, our excess risk scales with the $k$-th moment bound instead of the uniform Lipschitz parameter of the loss, allowing for significantly faster rates in the presence of outliers and/or heavy-tailed data. For convex and strongly convex loss functions, we provide the first asymptotically optimal excess risk bounds (up to a logarithmic factor). In contrast to [WXDX20, KLZ22], our bounds do not require the loss function to be differentiable/smooth. We also devise an accelerated algorithm for smooth losses that runs in linear time and has excess risk that is tight in certain practical parameter regimes. Additionally, our work is the first to address non-convex non-uniformly Lipschitz loss functions satisfying the Proximal-PL inequality; this covers some practical machine learning models. Our Proximal-PL algorithm has near-optimal excess risk.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.