Image compression and denoising represent fundamental challenges in image processing with many real-world applications. To address practical demands, current solutions can be categorized into two main strategies: 1) sequential method; and 2) joint method. However, sequential methods have the disadvantage of error accumulation as there is information loss between multiple individual models. Recently, the academic community began to make some attempts to tackle this problem through end-to-end joint methods. Most of them ignore that different regions of noisy images have different characteristics. To solve these problems, in this paper, our proposed signal-to-noise ratio~(SNR) aware joint solution exploits local and non-local features for image compression and denoising simultaneously. We design an end-to-end trainable network, which includes the main encoder branch, the guidance branch, and the signal-to-noise ratio~(SNR) aware branch. We conducted extensive experiments on both synthetic and real-world datasets, demonstrating that our joint solution outperforms existing state-of-the-art methods.
The objective of single image dehazing is to restore hazy images and produce clear, high-quality visuals. Traditional convolutional models struggle with long-range dependencies due to their limited receptive field size. While Transformers excel at capturing such dependencies, their quadratic computational complexity in relation to feature map resolution makes them less suitable for pixel-to-pixel dense prediction tasks. Moreover, fixed kernels or tokens in most models do not adapt well to varying blur sizes, resulting in suboptimal dehazing performance. In this study, we introduce a novel dehazing network based on Parallel Stripe Cross Attention (PCSA) with a multi-scale strategy. PCSA efficiently integrates long-range dependencies by simultaneously capturing horizontal and vertical relationships, allowing each pixel to capture contextual cues from an expanded spatial domain. To handle different sizes and shapes of blurs flexibly, We employs a channel-wise design with varying convolutional kernel sizes and strip lengths in each PCSA to capture context information at different scales.Additionally, we incorporate a softmax-based adaptive weighting mechanism within PCSA to prioritize and leverage more critical features.
We develop theoretical foundations for widely used falsification tests for instrumental variable (IV) designs. We characterize these tests as conditional independence tests between negative control variables - proxies for potential threats - and either the IV or the outcome. We find that conventional applications of these falsification tests would flag problems in exogenous IV designs, and propose simple solutions to avoid this. We also propose new falsification tests that incorporate new types of negative control variables or alternative statistical tests. Finally, we illustrate that under stronger assumptions, negative control variables can also be used for bias correction.
In the field of image processing, applying intricate semantic modifications within existing images remains an enduring challenge. This paper introduces a pioneering framework that integrates viewpoint information to enhance the control of image editing tasks, especially for interior design scenes. By surveying existing object editing methodologies, we distill three essential criteria -- consistency, controllability, and harmony -- that should be met for an image editing method. In contrast to previous approaches, our framework takes the lead in satisfying all three requirements for addressing the challenge of image synthesis. Through comprehensive experiments, encompassing both quantitative assessments and qualitative comparisons with contemporary state-of-the-art methods, we present compelling evidence of our framework's superior performance across multiple dimensions. This work establishes a promising avenue for advancing image synthesis techniques and empowering precise object modifications while preserving the visual coherence of the entire composition.
Gaussian processes (GPs) are commonly used for prediction and inference for spatial data analyses. However, since estimation and prediction tasks have cubic time and quadratic memory complexity in number of locations, GPs are difficult to scale to large spatial datasets. The Vecchia approximation induces sparsity in the dependence structure and is one of several methods proposed to scale GP inference. Our work adds to the substantial research in this area by developing a stochastic gradient Markov chain Monte Carlo (SGMCMC) framework for efficient computation in GPs. At each step, the algorithm subsamples a minibatch of locations and subsequently updates process parameters through a Vecchia-approximated GP likelihood. Since the Vecchia-approximated GP has a time complexity that is linear in the number of locations, this results in scalable estimation in GPs. Through simulation studies, we demonstrate that SGMCMC is competitive with state-of-the-art scalable GP algorithms in terms of computational time and parameter estimation. An application of our method is also provided using the Argo dataset of ocean temperature measurements.
Recently, the usage of speech self-supervised models (SSL) for downstream tasks has been drawing a lot of attention. While large pre-trained models commonly outperform smaller models trained from scratch, questions regarding the optimal fine-tuning strategies remain prevalent. In this paper, we explore the fine-tuning strategies of the WavLM Large model for the speech emotion recognition task on the MSP Podcast Corpus. More specifically, we perform a series of experiments focusing on using gender and semantic information from utterances. We then sum up our findings and describe the final model we used for submission to Speech Emotion Recognition Challenge 2024.
Computer programs containing calls to linear solvers are a known challenge for automatic differentiation. Previous publications advise against differentiating through the low-level solver implementation, and instead advocate for high-level approaches that express the derivative in terms of a modified linear system that can be solved with a separate solver call. Despite this ubiquitous advice, we are not aware of prior work comparing the accuracy of both approaches. With this article we thus empirically study a simple question: What happens if we ignore common wisdom, and differentiate through linear solvers?
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report 79.0% accuracy on the Kinetics dataset without using any pre-training, largely surpassing the previous best results of this kind. On AVA action detection we achieve a new state-of-the-art of 28.3 mAP. Code will be made publicly available.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources