亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Feature attribution methods highlight the important input tokens as explanations to model predictions, which have been widely applied to deep neural networks towards trustworthy AI. However, recent works show that explanations provided by these methods face challenges of being faithful and robust. In this paper, we propose a method with Robustness improvement and Explanation Guided training towards more faithful EXplanations (REGEX) for text classification. First, we improve model robustness by input gradient regularization technique and virtual adversarial training. Secondly, we use salient ranking to mask noisy tokens and maximize the similarity between model attention and feature attribution, which can be seen as a self-training procedure without importing other external information. We conduct extensive experiments on six datasets with five attribution methods, and also evaluate the faithfulness in the out-of-domain setting. The results show that REGEX improves fidelity metrics of explanations in all settings and further achieves consistent gains based on two randomization tests. Moreover, we show that using highlight explanations produced by REGEX to train select-then-predict models results in comparable task performance to the end-to-end method.

相關內容

Many successful methods to learn dynamical systems from data have recently been introduced. However, ensuring that the inferred dynamics preserve known constraints, such as conservation laws or restrictions on the allowed system states, remains challenging. We propose stabilized neural differential equations (SNDEs), a method to enforce arbitrary manifold constraints for neural differential equations. Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably asymptotically stable. Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable. In extensive empirical evaluations, we demonstrate that SNDEs outperform existing methods while broadening the types of constraints that can be incorporated into NDE training.

Various methods for designing input features have been proposed for fault recognition in rotating machines using one-dimensional raw sensor data. The available methods are complex, rely on empirical approaches, and may differ depending on the condition monitoring data used. Therefore, this article proposes a novel algorithm to design input features that unifies the feature extraction process for different time-series sensor data. This new insight for designing/extracting input features is obtained through the lens of histogram theory. The proposed algorithm extracts discriminative input features, which are suitable for a simple classifier to deep neural network-based classifiers. The designed input features are given as input to the classifier with end-to-end training in a single framework for machine conditions recognition. The proposed scheme has been validated through three real-time datasets: a) acoustic dataset, b) CWRU vibration dataset, and c) IMS vibration dataset. The real-time results and comparative study show the effectiveness of the proposed scheme for the prediction of the machine's health states.

Deep learning techniques applied to program analysis tasks such as code classification, summarization, and bug detection have seen widespread interest. Traditional approaches, however, treat programming source code as natural language text, which may neglect significant structural or semantic details. Additionally, most current methods of representing source code focus solely on the code, without considering beneficial additional context. This paper explores the integration of static analysis and additional context such as bug reports and design patterns into source code representations for deep learning models. We use the Abstract Syntax Tree-based Neural Network (ASTNN) method and augment it with additional context information obtained from bug reports and design patterns, creating an enriched source code representation that significantly enhances the performance of common software engineering tasks such as code classification and code clone detection. Utilizing existing open-source code data, our approach improves the representation and processing of source code, thereby improving task performance.

Motivated by the recent application of approximate message passing (AMP) to the analysis of convex optimizations in multi-class classifications [Loureiro, et. al., 2021], we present a convergence analysis of AMP dynamics with non-separable multivariate nonlinearities. As an application, we present a complete (and independent) analysis of the motivated convex optimization problem.

Modern policy optimization methods in reinforcement learning, such as TRPO and PPO, owe their success to the use of parameterized policies. However, while theoretical guarantees have been established for this class of algorithms, especially in the tabular setting, the use of general parameterization schemes remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parameterizations. The policy class induced by our scheme recovers known classes, e.g., softmax, and generates new ones depending on the choice of mirror map. Using our framework, we obtain the first result that guarantees linear convergence for a policy-gradient-based method involving general parameterization. To demonstrate the ability of our framework to accommodate general parameterization schemes, we provide its sample complexity when using shallow neural networks, show that it represents an improvement upon the previous best results, and empirically validate the effectiveness of our theoretical claims on classic control tasks.

Quantum devices use qubits to represent information, which allows them to exploit important properties from quantum physics, specifically superposition and entanglement. As a result, quantum computers have the potential to outperform the most advanced classical computers. In recent years, quantum algorithms have shown hints of this promise, and many algorithms have been proposed for the quantum domain. There are two key hurdles to solving difficult real-world problems on quantum computers. The first is on the hardware front -- the number of qubits in the most advanced quantum systems is too small to make the solution of large problems practical. The second involves the algorithms themselves -- as quantum computers use qubits, the algorithms that work there are fundamentally different from those that work on traditional computers. As a result of these constraints, research has focused on developing approaches to solve small versions of problems as proofs of concept -- recognizing that it would be possible to scale these up once quantum devices with enough qubits become available. Our objective in this paper is along the same lines. We present a quantum approach to solve a well-studied problem in the context of data sharing. This heuristic uses the well-known Quantum Approximate Optimization Algorithm (QAOA). We present results on experiments involving small datasets to illustrate how the problem could be solved using quantum algorithms. The results show that the method has potential and provide answers close to optimal. At the same time, we realize there are opportunities for improving the method further.

Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for small models within a multi-task training framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our 770M T5 model outperforms the 540B PaLM model using only 80% of available data on a benchmark task.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司